{"title":"蛋白质颗粒在流体/流体界面上的界面特性及其与泡沫和乳液稳定性的关系","authors":"A. Fameau, E. Guzmán, H. Ritacco, A. Saint‐Jalmes","doi":"10.3389/frsfm.2023.1016061","DOIUrl":null,"url":null,"abstract":"It is now well-known that the assembly of particles at fluid/fluid interfaces, and the resulting dynamical properties of such particle-laden interfaces can provide high stabilization of dispersed systems such as emulsions and foams. Here, we focus on the emerging case of “protein particles,” a novel family of bio particles. We provide an updated perspective about their definition, production, bulk and interface properties, highlighting the most recent results of the obtained bioparticle-laden interfaces, and how such protein particles can stabilize liquid dispersions. The ability of protein particles for undergoing a fast adsorption to fluid/fluid interfaces and for forming viscoelastic layers play a key role on the prevention of drainage, coalescence, or coarsening/ripening, which results in the formation of very stable particle-stabilized foams and emulsions. Therefore, protein particles are an excellent bio-based alternative to synthetic surfactants and other conventional stabilizers for ensuring the stabilization of a broad range of dispersed systems, opening new avenues for the design of new products with interest for cosmetic, food and biomedical industries.","PeriodicalId":409762,"journal":{"name":"Frontiers in Soft Matter","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interfacial properties of protein particles at fluid/fluid interfaces and relationship with the stability of foams and emulsions\",\"authors\":\"A. Fameau, E. Guzmán, H. Ritacco, A. Saint‐Jalmes\",\"doi\":\"10.3389/frsfm.2023.1016061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is now well-known that the assembly of particles at fluid/fluid interfaces, and the resulting dynamical properties of such particle-laden interfaces can provide high stabilization of dispersed systems such as emulsions and foams. Here, we focus on the emerging case of “protein particles,” a novel family of bio particles. We provide an updated perspective about their definition, production, bulk and interface properties, highlighting the most recent results of the obtained bioparticle-laden interfaces, and how such protein particles can stabilize liquid dispersions. The ability of protein particles for undergoing a fast adsorption to fluid/fluid interfaces and for forming viscoelastic layers play a key role on the prevention of drainage, coalescence, or coarsening/ripening, which results in the formation of very stable particle-stabilized foams and emulsions. Therefore, protein particles are an excellent bio-based alternative to synthetic surfactants and other conventional stabilizers for ensuring the stabilization of a broad range of dispersed systems, opening new avenues for the design of new products with interest for cosmetic, food and biomedical industries.\",\"PeriodicalId\":409762,\"journal\":{\"name\":\"Frontiers in Soft Matter\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Soft Matter\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frsfm.2023.1016061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Soft Matter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frsfm.2023.1016061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Interfacial properties of protein particles at fluid/fluid interfaces and relationship with the stability of foams and emulsions
It is now well-known that the assembly of particles at fluid/fluid interfaces, and the resulting dynamical properties of such particle-laden interfaces can provide high stabilization of dispersed systems such as emulsions and foams. Here, we focus on the emerging case of “protein particles,” a novel family of bio particles. We provide an updated perspective about their definition, production, bulk and interface properties, highlighting the most recent results of the obtained bioparticle-laden interfaces, and how such protein particles can stabilize liquid dispersions. The ability of protein particles for undergoing a fast adsorption to fluid/fluid interfaces and for forming viscoelastic layers play a key role on the prevention of drainage, coalescence, or coarsening/ripening, which results in the formation of very stable particle-stabilized foams and emulsions. Therefore, protein particles are an excellent bio-based alternative to synthetic surfactants and other conventional stabilizers for ensuring the stabilization of a broad range of dispersed systems, opening new avenues for the design of new products with interest for cosmetic, food and biomedical industries.