K. Athikulwongse, Daehyun Kim, Moongon Jung, S. Lim
{"title":"芯片到晶圆键合3D集成电路的块级设计及其设计质量权衡","authors":"K. Athikulwongse, Daehyun Kim, Moongon Jung, S. Lim","doi":"10.1109/ASPDAC.2013.6509680","DOIUrl":null,"url":null,"abstract":"In 3D ICs, block-level designs provide various advantages over designs done at other granularity such as gate-level because they promote the reuse of IP blocks. In this paper, we study block-level 3D-IC designs, where the footprint of the dies in the stack are different. This happens in case of die-to-wafer bonding, which is more popular choice for near-term low-cost 3D designs. We study design quality tradeoffs among three different ways to place through-silicon vias (TSVs): TSV-farm, TSV-distributed, and TSV-whitespace. In our holistic approach, we use wirelength, power, performance, temperature, and mechanical stress metrics to conduct comprehensive comparative studies on the three design styles. In addition, we provide analysis on the impact of TSV size and pitch on the design quality of these three styles.","PeriodicalId":297528,"journal":{"name":"2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Block-level designs of die-to-wafer bonded 3D ICs and their design quality tradeoffs\",\"authors\":\"K. Athikulwongse, Daehyun Kim, Moongon Jung, S. Lim\",\"doi\":\"10.1109/ASPDAC.2013.6509680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 3D ICs, block-level designs provide various advantages over designs done at other granularity such as gate-level because they promote the reuse of IP blocks. In this paper, we study block-level 3D-IC designs, where the footprint of the dies in the stack are different. This happens in case of die-to-wafer bonding, which is more popular choice for near-term low-cost 3D designs. We study design quality tradeoffs among three different ways to place through-silicon vias (TSVs): TSV-farm, TSV-distributed, and TSV-whitespace. In our holistic approach, we use wirelength, power, performance, temperature, and mechanical stress metrics to conduct comprehensive comparative studies on the three design styles. In addition, we provide analysis on the impact of TSV size and pitch on the design quality of these three styles.\",\"PeriodicalId\":297528,\"journal\":{\"name\":\"2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASPDAC.2013.6509680\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.2013.6509680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Block-level designs of die-to-wafer bonded 3D ICs and their design quality tradeoffs
In 3D ICs, block-level designs provide various advantages over designs done at other granularity such as gate-level because they promote the reuse of IP blocks. In this paper, we study block-level 3D-IC designs, where the footprint of the dies in the stack are different. This happens in case of die-to-wafer bonding, which is more popular choice for near-term low-cost 3D designs. We study design quality tradeoffs among three different ways to place through-silicon vias (TSVs): TSV-farm, TSV-distributed, and TSV-whitespace. In our holistic approach, we use wirelength, power, performance, temperature, and mechanical stress metrics to conduct comprehensive comparative studies on the three design styles. In addition, we provide analysis on the impact of TSV size and pitch on the design quality of these three styles.