有界叶弦图的支配与割问题

Esther Galby, D. Marx, Philipp Schepper, Roohani Sharma, P. Tale
{"title":"有界叶弦图的支配与割问题","authors":"Esther Galby, D. Marx, Philipp Schepper, Roohani Sharma, P. Tale","doi":"10.48550/arXiv.2208.02850","DOIUrl":null,"url":null,"abstract":"The leafage of a chordal graph G is the minimum integer l such that G can be realized as an intersection graph of subtrees of a tree with l leaves. We consider structural parameterization by the leafage of classical domination and cut problems on chordal graphs. Fomin, Golovach, and Raymond [ESA 2018, Algorithmica 2020] proved, among other things, that Dominating Set on chordal graphs admits an algorithm running in time $2^{O(l^2)} n^{O(1)}$. We present a conceptually much simpler algorithm that runs in time $2^{O(l)} n^{O(1)}$. We extend our approach to obtain similar results for Connected Dominating Set and Steiner Tree. We then consider the two classical cut problems MultiCut with Undeletable Terminals and Multiway Cut with Undeletable Terminals. We prove that the former is W[1]-hard when parameterized by the leafage and complement this result by presenting a simple $n^{O(l)}$-time algorithm. To our surprise, we find that Multiway Cut with Undeletable Terminals on chordal graphs can be solved, in contrast, in $n^{O(1)}$-time.","PeriodicalId":137775,"journal":{"name":"International Symposium on Parameterized and Exact Computation","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Domination and Cut Problems on Chordal Graphs with Bounded Leafage\",\"authors\":\"Esther Galby, D. Marx, Philipp Schepper, Roohani Sharma, P. Tale\",\"doi\":\"10.48550/arXiv.2208.02850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The leafage of a chordal graph G is the minimum integer l such that G can be realized as an intersection graph of subtrees of a tree with l leaves. We consider structural parameterization by the leafage of classical domination and cut problems on chordal graphs. Fomin, Golovach, and Raymond [ESA 2018, Algorithmica 2020] proved, among other things, that Dominating Set on chordal graphs admits an algorithm running in time $2^{O(l^2)} n^{O(1)}$. We present a conceptually much simpler algorithm that runs in time $2^{O(l)} n^{O(1)}$. We extend our approach to obtain similar results for Connected Dominating Set and Steiner Tree. We then consider the two classical cut problems MultiCut with Undeletable Terminals and Multiway Cut with Undeletable Terminals. We prove that the former is W[1]-hard when parameterized by the leafage and complement this result by presenting a simple $n^{O(l)}$-time algorithm. To our surprise, we find that Multiway Cut with Undeletable Terminals on chordal graphs can be solved, in contrast, in $n^{O(1)}$-time.\",\"PeriodicalId\":137775,\"journal\":{\"name\":\"International Symposium on Parameterized and Exact Computation\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Parameterized and Exact Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2208.02850\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Parameterized and Exact Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2208.02850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

弦图G的叶子是最小整数l,使得G可以被实现为有l个叶子的树的子树的相交图。我们考虑了结构参数化的经典控制叶和弦图上的切问题。Fomin, Golovach和Raymond [ESA 2018, Algorithmica 2020]证明了弦图上的支配集允许在时间$2^{O(l^2)} n^{O(1)}$上运行的算法。我们提出了一个概念上更简单的算法,运行时间为$2^{O(l)} n^{O(1)}$。我们扩展了我们的方法,在连通支配集和斯坦纳树上得到了类似的结果。然后,我们考虑了两个经典的切割问题:终端不可删除的多路切割和终端不可删除的多路切割。我们证明了前者在叶片参数化时是W[1]-hard的,并提出了一个简单的$n^{O(l)}$ time算法来补充这一结果。令我们惊讶的是,我们发现在弦图上具有不可删除终端的多路切割可以在$n^{O(1)}$时间内解决。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Domination and Cut Problems on Chordal Graphs with Bounded Leafage
The leafage of a chordal graph G is the minimum integer l such that G can be realized as an intersection graph of subtrees of a tree with l leaves. We consider structural parameterization by the leafage of classical domination and cut problems on chordal graphs. Fomin, Golovach, and Raymond [ESA 2018, Algorithmica 2020] proved, among other things, that Dominating Set on chordal graphs admits an algorithm running in time $2^{O(l^2)} n^{O(1)}$. We present a conceptually much simpler algorithm that runs in time $2^{O(l)} n^{O(1)}$. We extend our approach to obtain similar results for Connected Dominating Set and Steiner Tree. We then consider the two classical cut problems MultiCut with Undeletable Terminals and Multiway Cut with Undeletable Terminals. We prove that the former is W[1]-hard when parameterized by the leafage and complement this result by presenting a simple $n^{O(l)}$-time algorithm. To our surprise, we find that Multiway Cut with Undeletable Terminals on chordal graphs can be solved, in contrast, in $n^{O(1)}$-time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信