{"title":"基于方向场的svm指纹分类","authors":"Luping Ji, Zhang Yi","doi":"10.1109/ICNC.2007.700","DOIUrl":null,"url":null,"abstract":"This paper presents a classification method of fingerprint using orientation field and support vector machines. It estimates orientation field through pixel gradient, then calculates the percentages of the directional block classes. These percentages are combined as a four dimensional vector, by which the trained hierarchical classifier classifies the fingerprint into one of the six classes it belongs to. Experiments show that this method has high classification accuracy as well as low computational time cost.","PeriodicalId":250881,"journal":{"name":"Third International Conference on Natural Computation (ICNC 2007)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"SVM-based Fingerprint Classification Using Orientation Field\",\"authors\":\"Luping Ji, Zhang Yi\",\"doi\":\"10.1109/ICNC.2007.700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a classification method of fingerprint using orientation field and support vector machines. It estimates orientation field through pixel gradient, then calculates the percentages of the directional block classes. These percentages are combined as a four dimensional vector, by which the trained hierarchical classifier classifies the fingerprint into one of the six classes it belongs to. Experiments show that this method has high classification accuracy as well as low computational time cost.\",\"PeriodicalId\":250881,\"journal\":{\"name\":\"Third International Conference on Natural Computation (ICNC 2007)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Third International Conference on Natural Computation (ICNC 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2007.700\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Conference on Natural Computation (ICNC 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2007.700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SVM-based Fingerprint Classification Using Orientation Field
This paper presents a classification method of fingerprint using orientation field and support vector machines. It estimates orientation field through pixel gradient, then calculates the percentages of the directional block classes. These percentages are combined as a four dimensional vector, by which the trained hierarchical classifier classifies the fingerprint into one of the six classes it belongs to. Experiments show that this method has high classification accuracy as well as low computational time cost.