低分辨率遥感语义分割的端到端框架

M. B. Pereira, J. A. D. Santos
{"title":"低分辨率遥感语义分割的端到端框架","authors":"M. B. Pereira, J. A. D. Santos","doi":"10.1109/lagirs48042.2020.9165642","DOIUrl":null,"url":null,"abstract":"High-resolution images for remote sensing applications are often not affordable or accessible, especially when in need of a wide temporal span of recordings. Given the easy access to low-resolution (LR) images from satellites, many remote sensing works rely on this type of data. The problem is that LR images are not appropriate for semantic segmentation, due to the need for high-quality data for accurate pixel prediction for this task. In this paper, we propose an end-to-end framework that unites a super-resolution and a semantic segmentation module in order to produce accurate thematic maps from LR inputs. It allows the semantic segmentation network to conduct the reconstruction process, modifying the input image with helpful textures. We evaluate the framework with three remote sensing datasets. The results show that the framework is capable of achieving a semantic segmentation performance close to native high-resolution data, while also surpassing the performance of a network trained with LR inputs.","PeriodicalId":111863,"journal":{"name":"2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"An End-To-End Framework For Low-Resolution Remote Sensing Semantic Segmentation\",\"authors\":\"M. B. Pereira, J. A. D. Santos\",\"doi\":\"10.1109/lagirs48042.2020.9165642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-resolution images for remote sensing applications are often not affordable or accessible, especially when in need of a wide temporal span of recordings. Given the easy access to low-resolution (LR) images from satellites, many remote sensing works rely on this type of data. The problem is that LR images are not appropriate for semantic segmentation, due to the need for high-quality data for accurate pixel prediction for this task. In this paper, we propose an end-to-end framework that unites a super-resolution and a semantic segmentation module in order to produce accurate thematic maps from LR inputs. It allows the semantic segmentation network to conduct the reconstruction process, modifying the input image with helpful textures. We evaluate the framework with three remote sensing datasets. The results show that the framework is capable of achieving a semantic segmentation performance close to native high-resolution data, while also surpassing the performance of a network trained with LR inputs.\",\"PeriodicalId\":111863,\"journal\":{\"name\":\"2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/lagirs48042.2020.9165642\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/lagirs48042.2020.9165642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

用于遥感应用的高分辨率图像往往负担不起或难以获得,特别是在需要长时间记录的情况下。由于很容易从卫星获得低分辨率(LR)图像,许多遥感工作都依赖于这类数据。问题是LR图像不适合语义分割,因为这项任务需要高质量的数据来准确预测像素。在本文中,我们提出了一个端到端框架,该框架结合了超分辨率和语义分割模块,以便从LR输入生成准确的专题地图。它允许语义分割网络进行重建过程,用有用的纹理修改输入图像。我们用三个遥感数据集对该框架进行了评估。结果表明,该框架能够实现接近原生高分辨率数据的语义分割性能,同时也超过了使用LR输入训练的网络的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An End-To-End Framework For Low-Resolution Remote Sensing Semantic Segmentation
High-resolution images for remote sensing applications are often not affordable or accessible, especially when in need of a wide temporal span of recordings. Given the easy access to low-resolution (LR) images from satellites, many remote sensing works rely on this type of data. The problem is that LR images are not appropriate for semantic segmentation, due to the need for high-quality data for accurate pixel prediction for this task. In this paper, we propose an end-to-end framework that unites a super-resolution and a semantic segmentation module in order to produce accurate thematic maps from LR inputs. It allows the semantic segmentation network to conduct the reconstruction process, modifying the input image with helpful textures. We evaluate the framework with three remote sensing datasets. The results show that the framework is capable of achieving a semantic segmentation performance close to native high-resolution data, while also surpassing the performance of a network trained with LR inputs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信