认知计算:一个贝叶斯机器案例研究

M. Faix, E. Mazer, R. Laurent, Mohamad Othman Abdallah, Ronan Le Hy, J. Lobo
{"title":"认知计算:一个贝叶斯机器案例研究","authors":"M. Faix, E. Mazer, R. Laurent, Mohamad Othman Abdallah, Ronan Le Hy, J. Lobo","doi":"10.1109/ICCI-CC.2015.7259367","DOIUrl":null,"url":null,"abstract":"The work presented in this paper is part of the BAMBI project, which aims at better understanding natural cognition by designing non Von Neumann machines with biologicaly plausible hardware. Probabilistic programming allows artificial systems to better operate with uncertainty, and stochastic arithmetic provides a way to carry out approximate computations with few resources. As such, both are plausible models for natural cognition. Our work on the automatic design of probabilistic machines computing soft inferences with an arithmetic based on stochastic bitstreams allowed us to develop the following compilation toolchain: given a high level description of some general problem (typically to infer some knowledge from a model given some observations), formalized as a Bayesian Program, our toolchain automatically builds a low level description of an electronic circuit computing the corresponding probabilistic inference. This circuit can then be implemented and tested on reconfigurable logic.We designed as a validating example a circuit description of a Bayesian filter solving the problem of Pseudo Noise sequence acquisition in telecommunications.","PeriodicalId":328695,"journal":{"name":"2015 IEEE 14th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","volume":"7 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Cognitive computation: A Bayesian machine case study\",\"authors\":\"M. Faix, E. Mazer, R. Laurent, Mohamad Othman Abdallah, Ronan Le Hy, J. Lobo\",\"doi\":\"10.1109/ICCI-CC.2015.7259367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The work presented in this paper is part of the BAMBI project, which aims at better understanding natural cognition by designing non Von Neumann machines with biologicaly plausible hardware. Probabilistic programming allows artificial systems to better operate with uncertainty, and stochastic arithmetic provides a way to carry out approximate computations with few resources. As such, both are plausible models for natural cognition. Our work on the automatic design of probabilistic machines computing soft inferences with an arithmetic based on stochastic bitstreams allowed us to develop the following compilation toolchain: given a high level description of some general problem (typically to infer some knowledge from a model given some observations), formalized as a Bayesian Program, our toolchain automatically builds a low level description of an electronic circuit computing the corresponding probabilistic inference. This circuit can then be implemented and tested on reconfigurable logic.We designed as a validating example a circuit description of a Bayesian filter solving the problem of Pseudo Noise sequence acquisition in telecommunications.\",\"PeriodicalId\":328695,\"journal\":{\"name\":\"2015 IEEE 14th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)\",\"volume\":\"7 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 14th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCI-CC.2015.7259367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 14th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCI-CC.2015.7259367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

本文中介绍的工作是BAMBI项目的一部分,该项目旨在通过设计具有生物学上合理硬件的非冯诺伊曼机器来更好地理解自然认知。概率规划允许人工系统更好地处理不确定性,而随机算法提供了一种用很少资源进行近似计算的方法。因此,两者都是自然认知的合理模型。我们在基于随机比特流的算法计算软推理的概率机器的自动设计方面的工作使我们能够开发以下编译工具链:给定一些一般问题的高级描述(通常是从给定一些观察的模型中推断一些知识),形式化为贝叶斯程序,我们的工具链自动构建计算相应概率推理的电子电路的低级描述。然后,该电路可以在可重构逻辑上实现和测试。我们设计了一个贝叶斯滤波器的电路描述,作为一个验证实例来解决电信中伪噪声序列的采集问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cognitive computation: A Bayesian machine case study
The work presented in this paper is part of the BAMBI project, which aims at better understanding natural cognition by designing non Von Neumann machines with biologicaly plausible hardware. Probabilistic programming allows artificial systems to better operate with uncertainty, and stochastic arithmetic provides a way to carry out approximate computations with few resources. As such, both are plausible models for natural cognition. Our work on the automatic design of probabilistic machines computing soft inferences with an arithmetic based on stochastic bitstreams allowed us to develop the following compilation toolchain: given a high level description of some general problem (typically to infer some knowledge from a model given some observations), formalized as a Bayesian Program, our toolchain automatically builds a low level description of an electronic circuit computing the corresponding probabilistic inference. This circuit can then be implemented and tested on reconfigurable logic.We designed as a validating example a circuit description of a Bayesian filter solving the problem of Pseudo Noise sequence acquisition in telecommunications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信