一维指数非线性半线性波动方程的爆破率

Asma Azaiez, N. Masmoudi, H. Zaag
{"title":"一维指数非线性半线性波动方程的爆破率","authors":"Asma Azaiez, N. Masmoudi, H. Zaag","doi":"10.1017/9781108367639.001","DOIUrl":null,"url":null,"abstract":"We consider in this paper blow-up solutions of the semilinear wave equation in one space dimension, with an exponential source term. Assuming that initial data are in $H^{1}_{loc}\\times L^2_{loc}$ or some times in $ W^{1,\\infty}\\times L^{\\infty}$, we derive the blow-up rate near a non-characteristic point in the smaller space, and give some bounds near other points. Our result generalize those proved by Godin under high regularity assumptions on initial data.","PeriodicalId":286685,"journal":{"name":"Partial Differential Equations Arising from Physics and Geometry","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Blow-up Rate for a Semilinear Wave Equation with Exponential Nonlinearity in One Space Dimension\",\"authors\":\"Asma Azaiez, N. Masmoudi, H. Zaag\",\"doi\":\"10.1017/9781108367639.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider in this paper blow-up solutions of the semilinear wave equation in one space dimension, with an exponential source term. Assuming that initial data are in $H^{1}_{loc}\\\\times L^2_{loc}$ or some times in $ W^{1,\\\\infty}\\\\times L^{\\\\infty}$, we derive the blow-up rate near a non-characteristic point in the smaller space, and give some bounds near other points. Our result generalize those proved by Godin under high regularity assumptions on initial data.\",\"PeriodicalId\":286685,\"journal\":{\"name\":\"Partial Differential Equations Arising from Physics and Geometry\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations Arising from Physics and Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/9781108367639.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations Arising from Physics and Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/9781108367639.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文考虑一维空间中具有指数源项的半线性波动方程的爆破解。假设初始数据在$H^{1}_{loc}\times L^2_{loc}$或$ W^{1,\infty}\times L^{\infty}$中,我们在较小的空间中推导出非特征点附近的爆破率,并在其他点附近给出一些边界。我们的结果推广了Godin在初始数据高正则性假设下的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blow-up Rate for a Semilinear Wave Equation with Exponential Nonlinearity in One Space Dimension
We consider in this paper blow-up solutions of the semilinear wave equation in one space dimension, with an exponential source term. Assuming that initial data are in $H^{1}_{loc}\times L^2_{loc}$ or some times in $ W^{1,\infty}\times L^{\infty}$, we derive the blow-up rate near a non-characteristic point in the smaller space, and give some bounds near other points. Our result generalize those proved by Godin under high regularity assumptions on initial data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信