Racah代数:概述和最新结果

H. Bie, P. Iliev, W. Vijver, L. Vinet
{"title":"Racah代数:概述和最新结果","authors":"H. Bie, P. Iliev, W. Vijver, L. Vinet","doi":"10.1090/conm/768/15450","DOIUrl":null,"url":null,"abstract":"Recent results on the Racah algebra $\\mathcal{R}_n$ of rank $n - 2$ are reviewed. $\\mathcal{R}_n$ is defined in terms of generators and relations and sits in the centralizer of the diagonal action of $\\mathfrak{su}(1,1)$ in $\\mathcal{U}(\\mathfrak{su}(1,1))^{\\otimes n}$. Its connections with multivariate Racah polynomials are discussed. It is shown to be the symmetry algebra of the generic superintegrable model on the $ (n-1)$ - sphere and a number of interesting realizations are provided.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"The Racah algebra: An overview and recent\\n results\",\"authors\":\"H. Bie, P. Iliev, W. Vijver, L. Vinet\",\"doi\":\"10.1090/conm/768/15450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent results on the Racah algebra $\\\\mathcal{R}_n$ of rank $n - 2$ are reviewed. $\\\\mathcal{R}_n$ is defined in terms of generators and relations and sits in the centralizer of the diagonal action of $\\\\mathfrak{su}(1,1)$ in $\\\\mathcal{U}(\\\\mathfrak{su}(1,1))^{\\\\otimes n}$. Its connections with multivariate Racah polynomials are discussed. It is shown to be the symmetry algebra of the generic superintegrable model on the $ (n-1)$ - sphere and a number of interesting realizations are provided.\",\"PeriodicalId\":275006,\"journal\":{\"name\":\"arXiv: Representation Theory\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/conm/768/15450\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/conm/768/15450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

综述了秩$n - 2$的Racah代数$\mathcal{R}_n$的最新研究结果。$\mathcal{R}_n$是根据生成器和关系定义的,位于$\mathcal{U}(\mathfrak{su}(1,1))^{\otimes n}$中$\mathfrak{su}(1,1)$对角线作用的中心化器中。讨论了它与多元Racah多项式的联系。证明了$ (n-1)$ -球上的一般超可积模型的对称代数,并给出了一些有趣的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Racah algebra: An overview and recent results
Recent results on the Racah algebra $\mathcal{R}_n$ of rank $n - 2$ are reviewed. $\mathcal{R}_n$ is defined in terms of generators and relations and sits in the centralizer of the diagonal action of $\mathfrak{su}(1,1)$ in $\mathcal{U}(\mathfrak{su}(1,1))^{\otimes n}$. Its connections with multivariate Racah polynomials are discussed. It is shown to be the symmetry algebra of the generic superintegrable model on the $ (n-1)$ - sphere and a number of interesting realizations are provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信