基于遗传算法的不完全FDS系统可靠性模糊优化设计方法

T. Taguchi, T. Yokota, M. Gen
{"title":"基于遗传算法的不完全FDS系统可靠性模糊优化设计方法","authors":"T. Taguchi, T. Yokota, M. Gen","doi":"10.1109/KES.1998.725858","DOIUrl":null,"url":null,"abstract":"In this paper, we formulate a fuzzy nonlinear integer programming problem as an optimal design of system reliability with incomplete fault detecting and switching (FDS) that includes fuzzy numbers which allow the decision-maker to be more flexible, and solve it directly by keeping the nonlinear constraint by using an improved genetic algorithm (GA). The GA employs the variable penalties and the criterion of unfeasible chromosomes for improved evaluation function and improved arithmetic crossover. As a result, the improved GA increases the search efficiency in the solution space. We discuss the efficiency by comparing the proposed GA with traditional simple GA (SGA).","PeriodicalId":394492,"journal":{"name":"1998 Second International Conference. Knowledge-Based Intelligent Electronic Systems. Proceedings KES'98 (Cat. No.98EX111)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"GA-based method for fuzzy optimal design of system reliability with incomplete FDS\",\"authors\":\"T. Taguchi, T. Yokota, M. Gen\",\"doi\":\"10.1109/KES.1998.725858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we formulate a fuzzy nonlinear integer programming problem as an optimal design of system reliability with incomplete fault detecting and switching (FDS) that includes fuzzy numbers which allow the decision-maker to be more flexible, and solve it directly by keeping the nonlinear constraint by using an improved genetic algorithm (GA). The GA employs the variable penalties and the criterion of unfeasible chromosomes for improved evaluation function and improved arithmetic crossover. As a result, the improved GA increases the search efficiency in the solution space. We discuss the efficiency by comparing the proposed GA with traditional simple GA (SGA).\",\"PeriodicalId\":394492,\"journal\":{\"name\":\"1998 Second International Conference. Knowledge-Based Intelligent Electronic Systems. Proceedings KES'98 (Cat. No.98EX111)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1998 Second International Conference. Knowledge-Based Intelligent Electronic Systems. Proceedings KES'98 (Cat. No.98EX111)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KES.1998.725858\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 Second International Conference. Knowledge-Based Intelligent Electronic Systems. Proceedings KES'98 (Cat. No.98EX111)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KES.1998.725858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文将模糊非线性整数规划问题转化为包含模糊数的不完全故障检测与切换(FDS)系统可靠性优化设计问题,使决策者具有更大的灵活性,并采用改进的遗传算法(GA)通过保持非线性约束直接求解。该遗传算法采用可变惩罚和不可行染色体准则来改进评价函数和改进算法交叉。结果表明,改进的遗传算法提高了在解空间中的搜索效率。通过与传统的简单遗传算法(SGA)的比较,讨论了该算法的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GA-based method for fuzzy optimal design of system reliability with incomplete FDS
In this paper, we formulate a fuzzy nonlinear integer programming problem as an optimal design of system reliability with incomplete fault detecting and switching (FDS) that includes fuzzy numbers which allow the decision-maker to be more flexible, and solve it directly by keeping the nonlinear constraint by using an improved genetic algorithm (GA). The GA employs the variable penalties and the criterion of unfeasible chromosomes for improved evaluation function and improved arithmetic crossover. As a result, the improved GA increases the search efficiency in the solution space. We discuss the efficiency by comparing the proposed GA with traditional simple GA (SGA).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信