固定化ε-聚赖氨酸分子吸附型内毒素检测系统

K. Ooe, A. Tsuji, N. Nishishita, Y. Hirano
{"title":"固定化ε-聚赖氨酸分子吸附型内毒素检测系统","authors":"K. Ooe, A. Tsuji, N. Nishishita, Y. Hirano","doi":"10.1117/12.759459","DOIUrl":null,"url":null,"abstract":"Hemodialysis for chronic renal failure is the most popular treatment method with artificial organs. However, hemodialysis patients must continue the treatment throughout their life, the results of long term extracorporeal dialysis, those patients develop the various complications and diseases, for example, dialysis amyloidosis etc. Dialysis amyloidosis is one of the refractory complications, and endotoxin is thought to be the most likely cause of it, recently. Endotoxin is one of the major cell wall components of gram-negative bacteria, and it has various biological activities. In addition, it is known that a mount of endotoxin exists in living environment, and medicine is often contaminated with endotoxin. When contaminated dialyzing fluids are used to hemodialysis, above-mentioned dialysis amyloidosis is developed. Therefore, it is important that the detection and removal of endotoxin from dialyzing fluids. Until now, the measurement methods using Limulus Amebosyte Lysate (LAL) reagent were carried out as the tests for the presence of endtoxin. However, these methods include several different varieties of measurement techniques. The following are examples of them, gelatinization method, turbidimetric assay method, colorimetric assay method and fluoroscopic method. However, these techniques needed 30-60 minutes for the measurement. From these facts, they are not able to use as a \"real-time endotoxin detector\". The detection of endotoxin has needed to carry out immediately, for that reason, a new detection method is desired. In this research, we focused attention to adsorption reaction between ε-polylysine and endotoxin. ε-polylysine has the structure of straight chain molecule composed by 25-30 residues made by lysine, and it is used as an antimicrobial agent, moreover, cellulose beads with immobilized ε-polylysine is used as the barrier filter for endotoxin removal. The endotoxin is adsorbed to immobilized ε-polylysine, as the result of this reaction, the mass incrementation is occurred, and the existence of endtoxin can be detected immediately, by using of Quartz Crystal Microbalance (QCM). In this report, the immobilization of ε-polylysine onto the Au and Si substrate and its adsorptive activity are described. We use X-ray Photoelectron Spectroscopy (XPS) to confirm the ε-polylysine immobilization, and the adsorptive activity of immobilized ε-polylysine is measured by AFM and QCM. This molecular adsorption type endotoxin sensor aims to the realization of \"real-time endotoxin detection system\".","PeriodicalId":320411,"journal":{"name":"SPIE Micro + Nano Materials, Devices, and Applications","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The molecular adsorption-type endotoxin detection system using immobilized ε-polylysine\",\"authors\":\"K. Ooe, A. Tsuji, N. Nishishita, Y. Hirano\",\"doi\":\"10.1117/12.759459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hemodialysis for chronic renal failure is the most popular treatment method with artificial organs. However, hemodialysis patients must continue the treatment throughout their life, the results of long term extracorporeal dialysis, those patients develop the various complications and diseases, for example, dialysis amyloidosis etc. Dialysis amyloidosis is one of the refractory complications, and endotoxin is thought to be the most likely cause of it, recently. Endotoxin is one of the major cell wall components of gram-negative bacteria, and it has various biological activities. In addition, it is known that a mount of endotoxin exists in living environment, and medicine is often contaminated with endotoxin. When contaminated dialyzing fluids are used to hemodialysis, above-mentioned dialysis amyloidosis is developed. Therefore, it is important that the detection and removal of endotoxin from dialyzing fluids. Until now, the measurement methods using Limulus Amebosyte Lysate (LAL) reagent were carried out as the tests for the presence of endtoxin. However, these methods include several different varieties of measurement techniques. The following are examples of them, gelatinization method, turbidimetric assay method, colorimetric assay method and fluoroscopic method. However, these techniques needed 30-60 minutes for the measurement. From these facts, they are not able to use as a \\\"real-time endotoxin detector\\\". The detection of endotoxin has needed to carry out immediately, for that reason, a new detection method is desired. In this research, we focused attention to adsorption reaction between ε-polylysine and endotoxin. ε-polylysine has the structure of straight chain molecule composed by 25-30 residues made by lysine, and it is used as an antimicrobial agent, moreover, cellulose beads with immobilized ε-polylysine is used as the barrier filter for endotoxin removal. The endotoxin is adsorbed to immobilized ε-polylysine, as the result of this reaction, the mass incrementation is occurred, and the existence of endtoxin can be detected immediately, by using of Quartz Crystal Microbalance (QCM). In this report, the immobilization of ε-polylysine onto the Au and Si substrate and its adsorptive activity are described. We use X-ray Photoelectron Spectroscopy (XPS) to confirm the ε-polylysine immobilization, and the adsorptive activity of immobilized ε-polylysine is measured by AFM and QCM. This molecular adsorption type endotoxin sensor aims to the realization of \\\"real-time endotoxin detection system\\\".\",\"PeriodicalId\":320411,\"journal\":{\"name\":\"SPIE Micro + Nano Materials, Devices, and Applications\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE Micro + Nano Materials, Devices, and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.759459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Micro + Nano Materials, Devices, and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.759459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

血液透析治疗慢性肾功能衰竭是最常用的人工器官治疗方法。然而,血液透析患者必须终生持续治疗,由于长期体外透析,这些患者会发展出各种并发症和疾病,如透析淀粉样变等。透析淀粉样变是难治性并发症之一,内毒素是目前认为最可能的病因。内毒素是革兰氏阴性菌细胞壁的主要成分之一,具有多种生物活性。此外,众所周知,生活环境中存在大量的内毒素,而药物往往被内毒素污染。当被污染的透析液用于血液透析时,会发生上述透析淀粉样变。因此,透析液中内毒素的检测和去除是非常重要的。目前,检测内毒素的方法主要采用鲎试剂(LAL)。然而,这些方法包括几种不同的测量技术。下面是它们的例子:糊化法、比浊法、比色法和荧光法。然而,这些技术需要30-60分钟的测量时间。从这些事实来看,它们不能用作“实时内毒素检测器”。内毒素的检测需要立即进行,因此需要一种新的检测方法。本研究主要研究ε-聚赖氨酸与内毒素的吸附反应。ε-聚赖氨酸具有由25-30个赖氨酸残基组成的直链分子结构,可用作抗菌剂,并将固定了ε-聚赖氨酸的纤维素球用作去除内毒素的屏障过滤器。内毒素吸附在固定的ε-聚赖氨酸上,反应发生质量增加,利用石英晶体微天平(QCM)可立即检测内毒素的存在。本文描述了ε-聚赖氨酸在金和硅基体上的固定化及其吸附活性。利用x射线光电子能谱(XPS)对固定的ε-聚赖氨酸进行了验证,并利用原子力显微镜(AFM)和量子能谱仪(QCM)测定了固定的ε-聚赖氨酸的吸附活性。该分子吸附式内毒素传感器旨在实现“实时内毒素检测系统”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The molecular adsorption-type endotoxin detection system using immobilized ε-polylysine
Hemodialysis for chronic renal failure is the most popular treatment method with artificial organs. However, hemodialysis patients must continue the treatment throughout their life, the results of long term extracorporeal dialysis, those patients develop the various complications and diseases, for example, dialysis amyloidosis etc. Dialysis amyloidosis is one of the refractory complications, and endotoxin is thought to be the most likely cause of it, recently. Endotoxin is one of the major cell wall components of gram-negative bacteria, and it has various biological activities. In addition, it is known that a mount of endotoxin exists in living environment, and medicine is often contaminated with endotoxin. When contaminated dialyzing fluids are used to hemodialysis, above-mentioned dialysis amyloidosis is developed. Therefore, it is important that the detection and removal of endotoxin from dialyzing fluids. Until now, the measurement methods using Limulus Amebosyte Lysate (LAL) reagent were carried out as the tests for the presence of endtoxin. However, these methods include several different varieties of measurement techniques. The following are examples of them, gelatinization method, turbidimetric assay method, colorimetric assay method and fluoroscopic method. However, these techniques needed 30-60 minutes for the measurement. From these facts, they are not able to use as a "real-time endotoxin detector". The detection of endotoxin has needed to carry out immediately, for that reason, a new detection method is desired. In this research, we focused attention to adsorption reaction between ε-polylysine and endotoxin. ε-polylysine has the structure of straight chain molecule composed by 25-30 residues made by lysine, and it is used as an antimicrobial agent, moreover, cellulose beads with immobilized ε-polylysine is used as the barrier filter for endotoxin removal. The endotoxin is adsorbed to immobilized ε-polylysine, as the result of this reaction, the mass incrementation is occurred, and the existence of endtoxin can be detected immediately, by using of Quartz Crystal Microbalance (QCM). In this report, the immobilization of ε-polylysine onto the Au and Si substrate and its adsorptive activity are described. We use X-ray Photoelectron Spectroscopy (XPS) to confirm the ε-polylysine immobilization, and the adsorptive activity of immobilized ε-polylysine is measured by AFM and QCM. This molecular adsorption type endotoxin sensor aims to the realization of "real-time endotoxin detection system".
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信