对于矩阵和算子的Hölder不等式中相等的情况

G. Larotonda
{"title":"对于矩阵和算子的Hölder不等式中相等的情况","authors":"G. Larotonda","doi":"10.3318/PRIA.2018.118.01","DOIUrl":null,"url":null,"abstract":"Let $p>1$ and $1/p+1/q=1$. Consider H\\\"older's inequality $$ \\|ab^*\\|_1\\le \\|a\\|_p\\|b\\|_q $$ for the $p$-norms of some trace ($a,b$ are matrices, compact operators, elements of a finite $C^*$-algebra or a semi-finite von Neumann algebra). This note contains a simple proof (based on the case $p=2$) of the fact that equality holds iff $|a|^p=\\lambda |b|^q$ for some $\\lambda\\ge 0$.","PeriodicalId":434988,"journal":{"name":"Mathematical Proceedings of the Royal Irish Academy","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"The case of equality in Hölder's inequality for matrices and operators\",\"authors\":\"G. Larotonda\",\"doi\":\"10.3318/PRIA.2018.118.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $p>1$ and $1/p+1/q=1$. Consider H\\\\\\\"older's inequality $$ \\\\|ab^*\\\\|_1\\\\le \\\\|a\\\\|_p\\\\|b\\\\|_q $$ for the $p$-norms of some trace ($a,b$ are matrices, compact operators, elements of a finite $C^*$-algebra or a semi-finite von Neumann algebra). This note contains a simple proof (based on the case $p=2$) of the fact that equality holds iff $|a|^p=\\\\lambda |b|^q$ for some $\\\\lambda\\\\ge 0$.\",\"PeriodicalId\":434988,\"journal\":{\"name\":\"Mathematical Proceedings of the Royal Irish Academy\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Royal Irish Academy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3318/PRIA.2018.118.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Royal Irish Academy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3318/PRIA.2018.118.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

让$p>1$和$1/p+1/q=1$。考虑Hölder的不等式$$ \|ab^*\|_1\le \|a\|_p\|b\|_q $$对于某些轨迹的$p$ -范数($a,b$是矩阵,紧算符,有限$C^*$ -代数或半有限冯·诺伊曼代数的元素)。这篇笔记包含了一个简单的证明(基于案例$p=2$),证明对于某些$\lambda\ge 0$,等式对$|a|^p=\lambda |b|^q$成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The case of equality in Hölder's inequality for matrices and operators
Let $p>1$ and $1/p+1/q=1$. Consider H\"older's inequality $$ \|ab^*\|_1\le \|a\|_p\|b\|_q $$ for the $p$-norms of some trace ($a,b$ are matrices, compact operators, elements of a finite $C^*$-algebra or a semi-finite von Neumann algebra). This note contains a simple proof (based on the case $p=2$) of the fact that equality holds iff $|a|^p=\lambda |b|^q$ for some $\lambda\ge 0$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信