{"title":"比较点击数据和购买决策,以进行检索评估","authors":"Katja Hofmann, B. Huurnink, M. Bron, M. de Rijke","doi":"10.1145/1835449.1835603","DOIUrl":null,"url":null,"abstract":"Traditional retrieval evaluation uses explicit relevance judgments which are expensive to collect. Relevance assessments inferred from implicit feedback such as click-through data can be collected inexpensively, but may be less reliable. We compare assessments derived from click-through data to another source of implicit feedback that we assume to be highly indicative of relevance: purchase decisions. Evaluating retrieval runs based on a log of an audio-visual archive, we find agreement between system rankings and purchase decisions to be surprisingly high.","PeriodicalId":378368,"journal":{"name":"Proceedings of the 33rd international ACM SIGIR conference on Research and development in information retrieval","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Comparing click-through data to purchase decisions for retrieval evaluation\",\"authors\":\"Katja Hofmann, B. Huurnink, M. Bron, M. de Rijke\",\"doi\":\"10.1145/1835449.1835603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional retrieval evaluation uses explicit relevance judgments which are expensive to collect. Relevance assessments inferred from implicit feedback such as click-through data can be collected inexpensively, but may be less reliable. We compare assessments derived from click-through data to another source of implicit feedback that we assume to be highly indicative of relevance: purchase decisions. Evaluating retrieval runs based on a log of an audio-visual archive, we find agreement between system rankings and purchase decisions to be surprisingly high.\",\"PeriodicalId\":378368,\"journal\":{\"name\":\"Proceedings of the 33rd international ACM SIGIR conference on Research and development in information retrieval\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 33rd international ACM SIGIR conference on Research and development in information retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1835449.1835603\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 33rd international ACM SIGIR conference on Research and development in information retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1835449.1835603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparing click-through data to purchase decisions for retrieval evaluation
Traditional retrieval evaluation uses explicit relevance judgments which are expensive to collect. Relevance assessments inferred from implicit feedback such as click-through data can be collected inexpensively, but may be less reliable. We compare assessments derived from click-through data to another source of implicit feedback that we assume to be highly indicative of relevance: purchase decisions. Evaluating retrieval runs based on a log of an audio-visual archive, we find agreement between system rankings and purchase decisions to be surprisingly high.