{"title":"PANDORA:一个并行化近似发现框架(WIP论文)","authors":"G. Stitt, David Campbell","doi":"10.1145/3316482.3326345","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce PANDORA---a framework that complements existing parallelizing compilers by automatically discovering application- and architecture-specialized approximations. We demonstrate that PANDORA creates approximations that extract massive amounts of parallelism from inherently sequential code by eliminating loop-carried dependencies---a long-time goal of the compiler research community. Compared to exact parallel baselines, preliminary results show speedups ranging from 2.3x to 81x with acceptable error for many usage scenarios.","PeriodicalId":256029,"journal":{"name":"Proceedings of the 20th ACM SIGPLAN/SIGBED International Conference on Languages, Compilers, and Tools for Embedded Systems","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"PANDORA: a parallelizing approximation-discovery framework (WIP paper)\",\"authors\":\"G. Stitt, David Campbell\",\"doi\":\"10.1145/3316482.3326345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce PANDORA---a framework that complements existing parallelizing compilers by automatically discovering application- and architecture-specialized approximations. We demonstrate that PANDORA creates approximations that extract massive amounts of parallelism from inherently sequential code by eliminating loop-carried dependencies---a long-time goal of the compiler research community. Compared to exact parallel baselines, preliminary results show speedups ranging from 2.3x to 81x with acceptable error for many usage scenarios.\",\"PeriodicalId\":256029,\"journal\":{\"name\":\"Proceedings of the 20th ACM SIGPLAN/SIGBED International Conference on Languages, Compilers, and Tools for Embedded Systems\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 20th ACM SIGPLAN/SIGBED International Conference on Languages, Compilers, and Tools for Embedded Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3316482.3326345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th ACM SIGPLAN/SIGBED International Conference on Languages, Compilers, and Tools for Embedded Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3316482.3326345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PANDORA: a parallelizing approximation-discovery framework (WIP paper)
In this paper, we introduce PANDORA---a framework that complements existing parallelizing compilers by automatically discovering application- and architecture-specialized approximations. We demonstrate that PANDORA creates approximations that extract massive amounts of parallelism from inherently sequential code by eliminating loop-carried dependencies---a long-time goal of the compiler research community. Compared to exact parallel baselines, preliminary results show speedups ranging from 2.3x to 81x with acceptable error for many usage scenarios.