一种基于时间序列分析理论的频谱占用异常检测方法

Wang Lei, Xie Shuguo
{"title":"一种基于时间序列分析理论的频谱占用异常检测方法","authors":"Wang Lei, Xie Shuguo","doi":"10.1109/IWEM.2012.6320374","DOIUrl":null,"url":null,"abstract":"Efficient spectrum management and dynamic spectrum access networks heavily rely on accurate statistics of spectrum utilization and temporal behaviour modelling of spectrum occupancy. In this paper, we propose a novel method for spectrum occupancy time-varying characteristics analysis, which includes modelling and anomaly detection of dynamic spectrum occupancy data. First, through the procedure of preprocessing and statistical test for measured spectrum data, we demonstrate the conditional heteroskedasticity existed in spectrum occupancy time-varying series. Furthermore, we present an EGARCH (exponential generalized auto regressive conditional heteroskedasticity) model to fit the variance of spectrum occupancy. Finally, we present an iteration algorithm to detect spectrum occupancy anomaly, and the empirical results show that the proposed method can identify the outliers of spectrum occupancy series without the need for a prior knowledge.","PeriodicalId":314019,"journal":{"name":"2012 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A novel spectrum occupancy anomaly detection method based on time series analysis theory\",\"authors\":\"Wang Lei, Xie Shuguo\",\"doi\":\"10.1109/IWEM.2012.6320374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficient spectrum management and dynamic spectrum access networks heavily rely on accurate statistics of spectrum utilization and temporal behaviour modelling of spectrum occupancy. In this paper, we propose a novel method for spectrum occupancy time-varying characteristics analysis, which includes modelling and anomaly detection of dynamic spectrum occupancy data. First, through the procedure of preprocessing and statistical test for measured spectrum data, we demonstrate the conditional heteroskedasticity existed in spectrum occupancy time-varying series. Furthermore, we present an EGARCH (exponential generalized auto regressive conditional heteroskedasticity) model to fit the variance of spectrum occupancy. Finally, we present an iteration algorithm to detect spectrum occupancy anomaly, and the empirical results show that the proposed method can identify the outliers of spectrum occupancy series without the need for a prior knowledge.\",\"PeriodicalId\":314019,\"journal\":{\"name\":\"2012 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWEM.2012.6320374\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWEM.2012.6320374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

有效的频谱管理和动态频谱接入网络在很大程度上依赖于频谱利用的准确统计和频谱占用的时间行为建模。本文提出了一种新的频谱占用时变特征分析方法,包括动态频谱占用数据的建模和异常检测。首先,通过对实测光谱数据的预处理和统计检验,证明了光谱占用时变序列存在条件异方差。此外,我们提出了一个EGARCH(指数广义自回归条件异方差)模型来拟合频谱占用的方差。最后,我们提出了一种检测频谱占用异常的迭代算法,实验结果表明,该方法可以在不需要先验知识的情况下识别出频谱占用序列的异常值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel spectrum occupancy anomaly detection method based on time series analysis theory
Efficient spectrum management and dynamic spectrum access networks heavily rely on accurate statistics of spectrum utilization and temporal behaviour modelling of spectrum occupancy. In this paper, we propose a novel method for spectrum occupancy time-varying characteristics analysis, which includes modelling and anomaly detection of dynamic spectrum occupancy data. First, through the procedure of preprocessing and statistical test for measured spectrum data, we demonstrate the conditional heteroskedasticity existed in spectrum occupancy time-varying series. Furthermore, we present an EGARCH (exponential generalized auto regressive conditional heteroskedasticity) model to fit the variance of spectrum occupancy. Finally, we present an iteration algorithm to detect spectrum occupancy anomaly, and the empirical results show that the proposed method can identify the outliers of spectrum occupancy series without the need for a prior knowledge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信