安全弹性数字孪生模型应用中的挑战

Muhammad Taimoor Khan
{"title":"安全弹性数字孪生模型应用中的挑战","authors":"Muhammad Taimoor Khan","doi":"10.1109/ISC255366.2022.9921921","DOIUrl":null,"url":null,"abstract":"Digital twin-based modern smart city infrastructures are evolving into intelligent and distributed systems of autonomous entities operating in a dynamic cyber-physical environment to offer real-time and critical services. These services are typically implemented as software applications in various application domains, e.g., healthcare, cooperative robotic systems, and autonomous vehicles. However, to assure continued safe operations of the critical services with strict real-time requirements even when the service is under attack is an extremely challenging task mainly because the underlying operating environment for such applications is highly volatile yet distributed. To this end, first, we classify (as we call it) timed resilience requirements into computational and communication resilience and then discuss key challenges that hinder the modeling of such requirements to help develop rigorous distributed applications for real-time resilient autonomous systems. Finally, we demonstrate our vision to handle these challenges by introducing by-design and by-response approaches that consider security as a prerequisite of the safety and resilience of autonomous systems.","PeriodicalId":277015,"journal":{"name":"2022 IEEE International Smart Cities Conference (ISC2)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Challenges in Modelling Applications for Safe and Resilient Digital Twins\",\"authors\":\"Muhammad Taimoor Khan\",\"doi\":\"10.1109/ISC255366.2022.9921921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digital twin-based modern smart city infrastructures are evolving into intelligent and distributed systems of autonomous entities operating in a dynamic cyber-physical environment to offer real-time and critical services. These services are typically implemented as software applications in various application domains, e.g., healthcare, cooperative robotic systems, and autonomous vehicles. However, to assure continued safe operations of the critical services with strict real-time requirements even when the service is under attack is an extremely challenging task mainly because the underlying operating environment for such applications is highly volatile yet distributed. To this end, first, we classify (as we call it) timed resilience requirements into computational and communication resilience and then discuss key challenges that hinder the modeling of such requirements to help develop rigorous distributed applications for real-time resilient autonomous systems. Finally, we demonstrate our vision to handle these challenges by introducing by-design and by-response approaches that consider security as a prerequisite of the safety and resilience of autonomous systems.\",\"PeriodicalId\":277015,\"journal\":{\"name\":\"2022 IEEE International Smart Cities Conference (ISC2)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Smart Cities Conference (ISC2)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISC255366.2022.9921921\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Smart Cities Conference (ISC2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISC255366.2022.9921921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于数字孪生的现代智慧城市基础设施正在演变为在动态网络物理环境中运行的自治实体的智能分布式系统,以提供实时和关键服务。这些服务通常作为各种应用领域中的软件应用程序实现,例如,医疗保健、协作机器人系统和自动驾驶汽车。然而,即使服务受到攻击,也要确保具有严格实时要求的关键服务的持续安全运行,这是一项极具挑战性的任务,主要是因为此类应用程序的底层操作环境高度不稳定,而且是分布式的。为此,首先,我们将(我们称之为)定时弹性需求分为计算弹性和通信弹性,然后讨论阻碍此类需求建模的关键挑战,以帮助开发实时弹性自治系统的严格分布式应用程序。最后,我们展示了我们的愿景,通过引入设计和响应方法来应对这些挑战,这些方法将安全性视为自主系统安全性和弹性的先决条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Challenges in Modelling Applications for Safe and Resilient Digital Twins
Digital twin-based modern smart city infrastructures are evolving into intelligent and distributed systems of autonomous entities operating in a dynamic cyber-physical environment to offer real-time and critical services. These services are typically implemented as software applications in various application domains, e.g., healthcare, cooperative robotic systems, and autonomous vehicles. However, to assure continued safe operations of the critical services with strict real-time requirements even when the service is under attack is an extremely challenging task mainly because the underlying operating environment for such applications is highly volatile yet distributed. To this end, first, we classify (as we call it) timed resilience requirements into computational and communication resilience and then discuss key challenges that hinder the modeling of such requirements to help develop rigorous distributed applications for real-time resilient autonomous systems. Finally, we demonstrate our vision to handle these challenges by introducing by-design and by-response approaches that consider security as a prerequisite of the safety and resilience of autonomous systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信