基于残差神经网络和卷积块注意模块的心音分类

Enoch Frimpong, Qin Zhiguang, Tenagyei Edwin Kwadwo, Patamia Agbeshi Rutherford, E. Baagyere, Regina Esi Turkson
{"title":"基于残差神经网络和卷积块注意模块的心音分类","authors":"Enoch Frimpong, Qin Zhiguang, Tenagyei Edwin Kwadwo, Patamia Agbeshi Rutherford, E. Baagyere, Regina Esi Turkson","doi":"10.1109/ICCWAMTIP56608.2022.10016549","DOIUrl":null,"url":null,"abstract":"Listening to the heart sound with digital or manual stethoscopes has become one of the practical ways to identify heart diseases in recent years. It's still difficult because of its manual approach and the fact that only experienced healthcare practitioners can use it to diagnose anomalies. The automatic extraction of heart sound features to aid in classification has been explored, however there is still potential for improvement. This paper proposes a residual neural network integrated with a convolutional block attention module (CBAM) for heart sound analysis, using generated Mel-spectrograms as input for our network. We tested our model using the Pascal Heart Sound Challenge dataset, and it performed favorably to other cutting-edge models.","PeriodicalId":159508,"journal":{"name":"2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heart Sound Classification using Residual Neural Network and Convolution Block Attention Module\",\"authors\":\"Enoch Frimpong, Qin Zhiguang, Tenagyei Edwin Kwadwo, Patamia Agbeshi Rutherford, E. Baagyere, Regina Esi Turkson\",\"doi\":\"10.1109/ICCWAMTIP56608.2022.10016549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Listening to the heart sound with digital or manual stethoscopes has become one of the practical ways to identify heart diseases in recent years. It's still difficult because of its manual approach and the fact that only experienced healthcare practitioners can use it to diagnose anomalies. The automatic extraction of heart sound features to aid in classification has been explored, however there is still potential for improvement. This paper proposes a residual neural network integrated with a convolutional block attention module (CBAM) for heart sound analysis, using generated Mel-spectrograms as input for our network. We tested our model using the Pascal Heart Sound Challenge dataset, and it performed favorably to other cutting-edge models.\",\"PeriodicalId\":159508,\"journal\":{\"name\":\"2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCWAMTIP56608.2022.10016549\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCWAMTIP56608.2022.10016549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,用数字式或手动听诊器听心音已成为诊断心脏病的实用方法之一。这仍然很困难,因为它采用手动方法,而且只有经验丰富的医疗从业人员才能使用它来诊断异常。心音特征的自动提取以辅助分类已被探索,但仍有改进的潜力。本文提出了一种结合卷积块注意模块(CBAM)的残差神经网络,将生成的mel谱图作为网络的输入,用于心音分析。我们使用Pascal心音挑战数据集测试了我们的模型,它比其他尖端模型表现得更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heart Sound Classification using Residual Neural Network and Convolution Block Attention Module
Listening to the heart sound with digital or manual stethoscopes has become one of the practical ways to identify heart diseases in recent years. It's still difficult because of its manual approach and the fact that only experienced healthcare practitioners can use it to diagnose anomalies. The automatic extraction of heart sound features to aid in classification has been explored, however there is still potential for improvement. This paper proposes a residual neural network integrated with a convolutional block attention module (CBAM) for heart sound analysis, using generated Mel-spectrograms as input for our network. We tested our model using the Pascal Heart Sound Challenge dataset, and it performed favorably to other cutting-edge models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信