具有随机波动和系统共跳的货币期权均衡估值

Yu-hua Xing, Wei Wang, Xiaonan Su, Huawei Niu
{"title":"具有随机波动和系统共跳的货币期权均衡估值","authors":"Yu-hua Xing, Wei Wang, Xiaonan Su, Huawei Niu","doi":"10.3934/jimo.2022022","DOIUrl":null,"url":null,"abstract":"We consider the equilibrium valuation of currency options with stochastic volatility and systemic co-jumps under the setting of Lucas-type two country economy. Based on the stochastic volatility model in [2], we add an independent jump process and a co-jump process to model the money supply in each country. By solving a partial integro-differential equation (PIDE) for currency options, we can get a closed-form solution for a call currency option price. Compared with the option prices calculated by Monte Carlo method, we show the derived option pricing formula is efficient for practical use. The numerical results show that stochastic volatility and co-jumps have significant impacts on option prices and implied volatilities.","PeriodicalId":347719,"journal":{"name":"Journal of Industrial & Management Optimization","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equilibrium valuation of currency options with stochastic volatility and systemic co-jumps\",\"authors\":\"Yu-hua Xing, Wei Wang, Xiaonan Su, Huawei Niu\",\"doi\":\"10.3934/jimo.2022022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the equilibrium valuation of currency options with stochastic volatility and systemic co-jumps under the setting of Lucas-type two country economy. Based on the stochastic volatility model in [2], we add an independent jump process and a co-jump process to model the money supply in each country. By solving a partial integro-differential equation (PIDE) for currency options, we can get a closed-form solution for a call currency option price. Compared with the option prices calculated by Monte Carlo method, we show the derived option pricing formula is efficient for practical use. The numerical results show that stochastic volatility and co-jumps have significant impacts on option prices and implied volatilities.\",\"PeriodicalId\":347719,\"journal\":{\"name\":\"Journal of Industrial & Management Optimization\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial & Management Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/jimo.2022022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial & Management Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/jimo.2022022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了在卢卡斯型两国经济条件下具有随机波动率和系统共跳的货币期权的均衡估值问题。在b[2]的随机波动模型的基础上,我们加入了一个独立的跳跃过程和一个共同的跳跃过程来模拟各国的货币供给。通过求解货币期权的偏积分微分方程(PIDE),可以得到看涨货币期权价格的闭形式解。与蒙特卡罗方法计算的期权价格进行了比较,证明了所导出的期权定价公式是有效的。数值结果表明,随机波动率和共跳率对期权价格和隐含波动率有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Equilibrium valuation of currency options with stochastic volatility and systemic co-jumps
We consider the equilibrium valuation of currency options with stochastic volatility and systemic co-jumps under the setting of Lucas-type two country economy. Based on the stochastic volatility model in [2], we add an independent jump process and a co-jump process to model the money supply in each country. By solving a partial integro-differential equation (PIDE) for currency options, we can get a closed-form solution for a call currency option price. Compared with the option prices calculated by Monte Carlo method, we show the derived option pricing formula is efficient for practical use. The numerical results show that stochastic volatility and co-jumps have significant impacts on option prices and implied volatilities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信