D. Harame, X. Wang, B. Jagannathan, J. Perkarik, J. Watts, D. Sheridan, P. Cottrell, D. Greenberg, G. Freeman, K. Newton, M. Graf, E. Mina, A. Joseph, J. Dunn
{"title":"超宽带(UWB)系统的半导体技术选择","authors":"D. Harame, X. Wang, B. Jagannathan, J. Perkarik, J. Watts, D. Sheridan, P. Cottrell, D. Greenberg, G. Freeman, K. Newton, M. Graf, E. Mina, A. Joseph, J. Dunn","doi":"10.1109/ICU.2005.1570078","DOIUrl":null,"url":null,"abstract":"UWB 3.1-10.6 GHz frequency and bandwidth impose stringent performance demands of technology. The standard specifications, system architecture, frequency planning, and circuit topology have a major influence on the technology choice. Two technology choices are RFCMOS and SiGe BiCMOS. RFCMOS strongly increases speed and density with scaling, but analog parameters and layout are a concern. RFCMOS designs also require additional devices, sophisticated models and design kits over digital CMOS. SiGe HBTS have fewer device design tradeoffs due to bandgap-engineered vertical transport. Initial systems are system in a package. The low cost favors CMOS.","PeriodicalId":105819,"journal":{"name":"2005 IEEE International Conference on Ultra-Wideband","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Semiconductor technology choices for ultrawide-band (UWB) systems\",\"authors\":\"D. Harame, X. Wang, B. Jagannathan, J. Perkarik, J. Watts, D. Sheridan, P. Cottrell, D. Greenberg, G. Freeman, K. Newton, M. Graf, E. Mina, A. Joseph, J. Dunn\",\"doi\":\"10.1109/ICU.2005.1570078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"UWB 3.1-10.6 GHz frequency and bandwidth impose stringent performance demands of technology. The standard specifications, system architecture, frequency planning, and circuit topology have a major influence on the technology choice. Two technology choices are RFCMOS and SiGe BiCMOS. RFCMOS strongly increases speed and density with scaling, but analog parameters and layout are a concern. RFCMOS designs also require additional devices, sophisticated models and design kits over digital CMOS. SiGe HBTS have fewer device design tradeoffs due to bandgap-engineered vertical transport. Initial systems are system in a package. The low cost favors CMOS.\",\"PeriodicalId\":105819,\"journal\":{\"name\":\"2005 IEEE International Conference on Ultra-Wideband\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE International Conference on Ultra-Wideband\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICU.2005.1570078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE International Conference on Ultra-Wideband","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICU.2005.1570078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Semiconductor technology choices for ultrawide-band (UWB) systems
UWB 3.1-10.6 GHz frequency and bandwidth impose stringent performance demands of technology. The standard specifications, system architecture, frequency planning, and circuit topology have a major influence on the technology choice. Two technology choices are RFCMOS and SiGe BiCMOS. RFCMOS strongly increases speed and density with scaling, but analog parameters and layout are a concern. RFCMOS designs also require additional devices, sophisticated models and design kits over digital CMOS. SiGe HBTS have fewer device design tradeoffs due to bandgap-engineered vertical transport. Initial systems are system in a package. The low cost favors CMOS.