DANKMEMES @ EVALITA 2020:生活的模因:模因,多模态和政治

Martina Miliani, Giulia Giorgi, Ilir Rama, G. Anselmi, Gianluca E. Lebani
{"title":"DANKMEMES @ EVALITA 2020:生活的模因:模因,多模态和政治","authors":"Martina Miliani, Giulia Giorgi, Ilir Rama, G. Anselmi, Gianluca E. Lebani","doi":"10.4000/BOOKS.AACCADEMIA.7330","DOIUrl":null,"url":null,"abstract":"DANKMEMES is a shared task proposed for the 2020 EVALITA campaign, focusing on the automatic classification of Internet memes. Providing a corpus of 2.361 memes on the 2019 Italian Government Crisis, DANKMEMES features three tasks: A) Meme Detection, B) Hate Speech Identification, and C) Event Clustering. Overall, 5 groups took part in the first task, 2 in the second and 1 in the third. The best system was proposed by the UniTor group and achieved a F1 score of 0.8501 for task A, 0.8235 for task B and 0.2657 for task C. In this report, we describe how the task was set up, we report the system results and we discuss them.","PeriodicalId":184564,"journal":{"name":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"DANKMEMES @ EVALITA 2020: The Memeing of Life: Memes, Multimodality and Politics\",\"authors\":\"Martina Miliani, Giulia Giorgi, Ilir Rama, G. Anselmi, Gianluca E. Lebani\",\"doi\":\"10.4000/BOOKS.AACCADEMIA.7330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"DANKMEMES is a shared task proposed for the 2020 EVALITA campaign, focusing on the automatic classification of Internet memes. Providing a corpus of 2.361 memes on the 2019 Italian Government Crisis, DANKMEMES features three tasks: A) Meme Detection, B) Hate Speech Identification, and C) Event Clustering. Overall, 5 groups took part in the first task, 2 in the second and 1 in the third. The best system was proposed by the UniTor group and achieved a F1 score of 0.8501 for task A, 0.8235 for task B and 0.2657 for task C. In this report, we describe how the task was set up, we report the system results and we discuss them.\",\"PeriodicalId\":184564,\"journal\":{\"name\":\"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4000/BOOKS.AACCADEMIA.7330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4000/BOOKS.AACCADEMIA.7330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

DANKMEMES是为2020年EVALITA活动提出的一项共享任务,重点是网络模因的自动分类。DANKMEMES提供了一个关于2019年意大利政府危机的2.361个模因的语料库,主要有三个任务:a)模因检测,B)仇恨言论识别,C)事件聚类。总共有5组参加了第一项任务,2组参加了第二项任务,1组参加了第三项任务。UniTor小组提出了最佳系统,任务a的F1得分为0.8501,任务B的F1得分为0.8235,任务c的F1得分为0.2657。在本报告中,我们描述了任务的设置过程,报告了系统结果并进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DANKMEMES @ EVALITA 2020: The Memeing of Life: Memes, Multimodality and Politics
DANKMEMES is a shared task proposed for the 2020 EVALITA campaign, focusing on the automatic classification of Internet memes. Providing a corpus of 2.361 memes on the 2019 Italian Government Crisis, DANKMEMES features three tasks: A) Meme Detection, B) Hate Speech Identification, and C) Event Clustering. Overall, 5 groups took part in the first task, 2 in the second and 1 in the third. The best system was proposed by the UniTor group and achieved a F1 score of 0.8501 for task A, 0.8235 for task B and 0.2657 for task C. In this report, we describe how the task was set up, we report the system results and we discuss them.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信