基于置信度和曲率引导水平集的噪声地震图像信道分割

B. Kadlec
{"title":"基于置信度和曲率引导水平集的噪声地震图像信道分割","authors":"B. Kadlec","doi":"10.1109/WACV.2008.4544012","DOIUrl":null,"url":null,"abstract":"This paper presents a new method for segmenting channel features from commonly noisy 3D seismic images. Anisotropic diffusion using Gaussian-smoothed first order structure tensors is conducted along the strata of seismic images in a way that filters across discontinuous regions from noise or faulting, while preserving channel edges. The eigenstructure of the second order structure tensor is used to generate an estimation of orientation and channel curvature. Gaussian smoothing of second order tensor orientations accounts for noisy vectors from imprecise finite difference calculations and generates a stable tensor across the image. Analysis of the confidence and direction of second order eigenvectors is used to enhance depositional curvature in channel features by generating a confidence and curvature attribute. The tensor-derived attribute forms the terms of a PDE, which is iteratively updated as an implicit surface using the level set process. This technique is tested on two 3D seismic images with results that demonstrate the effectiveness of the approach.","PeriodicalId":439571,"journal":{"name":"2008 IEEE Workshop on Applications of Computer Vision","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Channel Segmentation using Confidence and Curvature-Guided Level Sets on Noisy Seismic Images\",\"authors\":\"B. Kadlec\",\"doi\":\"10.1109/WACV.2008.4544012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new method for segmenting channel features from commonly noisy 3D seismic images. Anisotropic diffusion using Gaussian-smoothed first order structure tensors is conducted along the strata of seismic images in a way that filters across discontinuous regions from noise or faulting, while preserving channel edges. The eigenstructure of the second order structure tensor is used to generate an estimation of orientation and channel curvature. Gaussian smoothing of second order tensor orientations accounts for noisy vectors from imprecise finite difference calculations and generates a stable tensor across the image. Analysis of the confidence and direction of second order eigenvectors is used to enhance depositional curvature in channel features by generating a confidence and curvature attribute. The tensor-derived attribute forms the terms of a PDE, which is iteratively updated as an implicit surface using the level set process. This technique is tested on two 3D seismic images with results that demonstrate the effectiveness of the approach.\",\"PeriodicalId\":439571,\"journal\":{\"name\":\"2008 IEEE Workshop on Applications of Computer Vision\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Workshop on Applications of Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV.2008.4544012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Workshop on Applications of Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2008.4544012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种从常见噪声的三维地震图像中分割通道特征的新方法。利用高斯平滑一阶结构张量沿地震图像分层进行各向异性扩散,以一种过滤噪声或断层的不连续区域的方式,同时保留通道边缘。利用二阶结构张量的本征结构产生方向和通道曲率的估计。二阶张量方向的高斯平滑处理了来自不精确有限差分计算的噪声矢量,并在图像上生成了一个稳定的张量。通过分析二阶特征向量的置信度和方向,生成置信度和曲率属性,增强河道特征的沉积曲率。张量派生的属性形成了PDE的项,它使用水平集过程迭代地更新为隐式曲面。该技术在两幅三维地震图像上进行了测试,结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Channel Segmentation using Confidence and Curvature-Guided Level Sets on Noisy Seismic Images
This paper presents a new method for segmenting channel features from commonly noisy 3D seismic images. Anisotropic diffusion using Gaussian-smoothed first order structure tensors is conducted along the strata of seismic images in a way that filters across discontinuous regions from noise or faulting, while preserving channel edges. The eigenstructure of the second order structure tensor is used to generate an estimation of orientation and channel curvature. Gaussian smoothing of second order tensor orientations accounts for noisy vectors from imprecise finite difference calculations and generates a stable tensor across the image. Analysis of the confidence and direction of second order eigenvectors is used to enhance depositional curvature in channel features by generating a confidence and curvature attribute. The tensor-derived attribute forms the terms of a PDE, which is iteratively updated as an implicit surface using the level set process. This technique is tested on two 3D seismic images with results that demonstrate the effectiveness of the approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信