豪华

Wei Liu, James Tuck, L. Ceze, Wonsun Ahn, K. Strauss, Jose Renau, J. Torrellas
{"title":"豪华","authors":"Wei Liu, James Tuck, L. Ceze, Wonsun Ahn, K. Strauss, Jose Renau, J. Torrellas","doi":"10.1145/1122971.1122997","DOIUrl":null,"url":null,"abstract":"As multi-core architectures with Thread-Level Speculation (TLS) are becoming better understood, it is important to focus on TLS compilation. TLS compilers are interesting in that, while they do not need to fully prove the independence of concurrent tasks, they make choices of where and when to generate speculative tasks that are crucial to overall TLS performance.This paper presents POSH, a new, fully automated TLS compiler built on top of gcc. POSH is based on two design decisions. First, to partition the code into tasks, it leverages the code structures created by the programmer, namely subroutines and loops. Second, it uses a simple profiling pass to discard ineffective tasks. With the code generated by POSH, a simulated TLS chip multiprocessor with 4 superscalar cores delivers an average speedup of 1.30 for the SPECint 2000 applications. Moreover, an estimated 26% of this speedup is a result of the implicit data prefetching provided by squashed tasks.","PeriodicalId":166212,"journal":{"name":"Proceedings of the eleventh ACM SIGPLAN symposium on Principles and practice of parallel programming - PPoPP '06","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"POSH\",\"authors\":\"Wei Liu, James Tuck, L. Ceze, Wonsun Ahn, K. Strauss, Jose Renau, J. Torrellas\",\"doi\":\"10.1145/1122971.1122997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As multi-core architectures with Thread-Level Speculation (TLS) are becoming better understood, it is important to focus on TLS compilation. TLS compilers are interesting in that, while they do not need to fully prove the independence of concurrent tasks, they make choices of where and when to generate speculative tasks that are crucial to overall TLS performance.This paper presents POSH, a new, fully automated TLS compiler built on top of gcc. POSH is based on two design decisions. First, to partition the code into tasks, it leverages the code structures created by the programmer, namely subroutines and loops. Second, it uses a simple profiling pass to discard ineffective tasks. With the code generated by POSH, a simulated TLS chip multiprocessor with 4 superscalar cores delivers an average speedup of 1.30 for the SPECint 2000 applications. Moreover, an estimated 26% of this speedup is a result of the implicit data prefetching provided by squashed tasks.\",\"PeriodicalId\":166212,\"journal\":{\"name\":\"Proceedings of the eleventh ACM SIGPLAN symposium on Principles and practice of parallel programming - PPoPP '06\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the eleventh ACM SIGPLAN symposium on Principles and practice of parallel programming - PPoPP '06\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1122971.1122997\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the eleventh ACM SIGPLAN symposium on Principles and practice of parallel programming - PPoPP '06","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1122971.1122997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
POSH
As multi-core architectures with Thread-Level Speculation (TLS) are becoming better understood, it is important to focus on TLS compilation. TLS compilers are interesting in that, while they do not need to fully prove the independence of concurrent tasks, they make choices of where and when to generate speculative tasks that are crucial to overall TLS performance.This paper presents POSH, a new, fully automated TLS compiler built on top of gcc. POSH is based on two design decisions. First, to partition the code into tasks, it leverages the code structures created by the programmer, namely subroutines and loops. Second, it uses a simple profiling pass to discard ineffective tasks. With the code generated by POSH, a simulated TLS chip multiprocessor with 4 superscalar cores delivers an average speedup of 1.30 for the SPECint 2000 applications. Moreover, an estimated 26% of this speedup is a result of the implicit data prefetching provided by squashed tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信