一种基于深度强化学习的DC/DC功率降压变换器比例-积分-差分控制器

Kexin Hu, Xin Zhang, Hao Ma
{"title":"一种基于深度强化学习的DC/DC功率降压变换器比例-积分-差分控制器","authors":"Kexin Hu, Xin Zhang, Hao Ma","doi":"10.1109/peas53589.2021.9628495","DOIUrl":null,"url":null,"abstract":"The development of DC microgrids poses challenges to the stability and transient performance of DC/DC converters. This article proposes a controller for Buck converters based on reinforcement learning without theoretical model analysis. The proposed controller uses the deep deterministic policy gradient algorithm, and has good transient performance and robustness for load fluctuation when combined with the basic proportion-integral-differential controller applied in the Buck converter.","PeriodicalId":268264,"journal":{"name":"2021 IEEE 1st International Power Electronics and Application Symposium (PEAS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Novel Proportion-Integral-Differential Controller Based on Deep Reinforcement Learning for DC/DC Power Buck Converters\",\"authors\":\"Kexin Hu, Xin Zhang, Hao Ma\",\"doi\":\"10.1109/peas53589.2021.9628495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of DC microgrids poses challenges to the stability and transient performance of DC/DC converters. This article proposes a controller for Buck converters based on reinforcement learning without theoretical model analysis. The proposed controller uses the deep deterministic policy gradient algorithm, and has good transient performance and robustness for load fluctuation when combined with the basic proportion-integral-differential controller applied in the Buck converter.\",\"PeriodicalId\":268264,\"journal\":{\"name\":\"2021 IEEE 1st International Power Electronics and Application Symposium (PEAS)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 1st International Power Electronics and Application Symposium (PEAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/peas53589.2021.9628495\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 1st International Power Electronics and Application Symposium (PEAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/peas53589.2021.9628495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

直流微电网的发展对DC/DC变换器的稳定性和暂态性能提出了挑战。本文提出了一种基于强化学习的Buck变换器控制器,但没有进行理论模型分析。该控制器采用深度确定性策略梯度算法,与Buck变换器中应用的基本比例-积分-微分控制器相结合,具有良好的暂态性能和对负载波动的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Proportion-Integral-Differential Controller Based on Deep Reinforcement Learning for DC/DC Power Buck Converters
The development of DC microgrids poses challenges to the stability and transient performance of DC/DC converters. This article proposes a controller for Buck converters based on reinforcement learning without theoretical model analysis. The proposed controller uses the deep deterministic policy gradient algorithm, and has good transient performance and robustness for load fluctuation when combined with the basic proportion-integral-differential controller applied in the Buck converter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信