高速链路变异性分析的机器学习方法比较研究

Thong Nguyen, Bobi Shi, J. Schutt-Ainé
{"title":"高速链路变异性分析的机器学习方法比较研究","authors":"Thong Nguyen, Bobi Shi, J. Schutt-Ainé","doi":"10.1109/SPI52361.2021.9505215","DOIUrl":null,"url":null,"abstract":"Non-intrusive stochastic analysis of a complex system requires a fast deterministic solver to simulate the mapping between the input and output. Different machine learning methods, namely Partial Least Square regression, Gaussian Process, and Polynomial Chaos expansion can be used to represent the input - output mapping. Once they are trained to learn the mapping, they are used to replace the expensive process that generates the output given an input, such as a full-wave electrogmanetic solver. Aforementioned methods are compared in this paper when trained on a simple high-speed link.","PeriodicalId":440368,"journal":{"name":"2021 IEEE 25th Workshop on Signal and Power Integrity (SPI)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative study of Machine Learning methods for variability analysis in High-speed link\",\"authors\":\"Thong Nguyen, Bobi Shi, J. Schutt-Ainé\",\"doi\":\"10.1109/SPI52361.2021.9505215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-intrusive stochastic analysis of a complex system requires a fast deterministic solver to simulate the mapping between the input and output. Different machine learning methods, namely Partial Least Square regression, Gaussian Process, and Polynomial Chaos expansion can be used to represent the input - output mapping. Once they are trained to learn the mapping, they are used to replace the expensive process that generates the output given an input, such as a full-wave electrogmanetic solver. Aforementioned methods are compared in this paper when trained on a simple high-speed link.\",\"PeriodicalId\":440368,\"journal\":{\"name\":\"2021 IEEE 25th Workshop on Signal and Power Integrity (SPI)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 25th Workshop on Signal and Power Integrity (SPI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPI52361.2021.9505215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 25th Workshop on Signal and Power Integrity (SPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPI52361.2021.9505215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

复杂系统的非侵入式随机分析需要一个快速的确定性求解器来模拟输入和输出之间的映射关系。不同的机器学习方法,即偏最小二乘回归,高斯过程和多项式混沌展开可以用来表示输入-输出映射。一旦它们被训练来学习映射,它们就被用来取代昂贵的过程,即在给定输入的情况下产生输出,比如全波电磁求解器。本文对上述方法在简单高速链路上的训练进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative study of Machine Learning methods for variability analysis in High-speed link
Non-intrusive stochastic analysis of a complex system requires a fast deterministic solver to simulate the mapping between the input and output. Different machine learning methods, namely Partial Least Square regression, Gaussian Process, and Polynomial Chaos expansion can be used to represent the input - output mapping. Once they are trained to learn the mapping, they are used to replace the expensive process that generates the output given an input, such as a full-wave electrogmanetic solver. Aforementioned methods are compared in this paper when trained on a simple high-speed link.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信