旋转关节机器人的递推牛顿-欧拉动力学及灵敏度分析

Shuvrodeb Barman, Y. Xiang
{"title":"旋转关节机器人的递推牛顿-欧拉动力学及灵敏度分析","authors":"Shuvrodeb Barman, Y. Xiang","doi":"10.1115/detc2020-22646","DOIUrl":null,"url":null,"abstract":"\n In this study, recursive Newton-Euler sensitivity equations are derived for robot manipulator motion planning problems. The dynamics and sensitivity equations depend on the 3 × 3 rotation matrices based on the moving coordinates. Compared to recursive Lagrangian formulation, which depends on 4 × 4 Denavit-Hartenberg (DH) transformation matrices, the moving coordinate formulation increases computational efficiency significantly as the number of matrix multiplications required for each optimization iteration is greatly reduced. A two-link manipulator time-optimal trajectory planning problem is solved using the proposed recursive Newton-Euler dynamics formulation. Only revolute joint is considered in the formulation. The predicted joint torque and trajectory are verified with the data in the literature. In addition, the optimal joint forces are retrieved from the optimization using recursive Newton-Euler dynamics.","PeriodicalId":236538,"journal":{"name":"Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Recursive Newton-Euler Dynamics and Sensitivity Analysis for Robot Manipulator With Revolute Joints\",\"authors\":\"Shuvrodeb Barman, Y. Xiang\",\"doi\":\"10.1115/detc2020-22646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this study, recursive Newton-Euler sensitivity equations are derived for robot manipulator motion planning problems. The dynamics and sensitivity equations depend on the 3 × 3 rotation matrices based on the moving coordinates. Compared to recursive Lagrangian formulation, which depends on 4 × 4 Denavit-Hartenberg (DH) transformation matrices, the moving coordinate formulation increases computational efficiency significantly as the number of matrix multiplications required for each optimization iteration is greatly reduced. A two-link manipulator time-optimal trajectory planning problem is solved using the proposed recursive Newton-Euler dynamics formulation. Only revolute joint is considered in the formulation. The predicted joint torque and trajectory are verified with the data in the literature. In addition, the optimal joint forces are retrieved from the optimization using recursive Newton-Euler dynamics.\",\"PeriodicalId\":236538,\"journal\":{\"name\":\"Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2020-22646\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2020-22646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对机械臂运动规划问题,导出了递推牛顿-欧拉灵敏度方程。动力学方程和灵敏度方程依赖于基于运动坐标的3 × 3旋转矩阵。与依赖4 × 4 Denavit-Hartenberg (DH)变换矩阵的递推lagrange公式相比,移动坐标公式显著提高了计算效率,因为每次优化迭代所需的矩阵乘法次数大大减少。利用提出的递推牛顿-欧拉动力学公式求解了双连杆机械臂时间最优轨迹规划问题。公式中只考虑转动关节。用文献数据对预测的关节力矩和轨迹进行了验证。此外,利用递推牛顿-欧拉动力学从优化中检索出最优的结合力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recursive Newton-Euler Dynamics and Sensitivity Analysis for Robot Manipulator With Revolute Joints
In this study, recursive Newton-Euler sensitivity equations are derived for robot manipulator motion planning problems. The dynamics and sensitivity equations depend on the 3 × 3 rotation matrices based on the moving coordinates. Compared to recursive Lagrangian formulation, which depends on 4 × 4 Denavit-Hartenberg (DH) transformation matrices, the moving coordinate formulation increases computational efficiency significantly as the number of matrix multiplications required for each optimization iteration is greatly reduced. A two-link manipulator time-optimal trajectory planning problem is solved using the proposed recursive Newton-Euler dynamics formulation. Only revolute joint is considered in the formulation. The predicted joint torque and trajectory are verified with the data in the literature. In addition, the optimal joint forces are retrieved from the optimization using recursive Newton-Euler dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信