基于多个集成MEMS传感器的地下航向精确估计智能滤波

Huan-xin Liu, R. Shor, Simon S. Park
{"title":"基于多个集成MEMS传感器的地下航向精确估计智能滤波","authors":"Huan-xin Liu, R. Shor, Simon S. Park","doi":"10.1109/ICSENS.2018.8589900","DOIUrl":null,"url":null,"abstract":"In this paper, a sensing system for subsurface application which includes a hybrid fusion methodology and two IMUs was developed. The system improves measurement reliability through the fusion of the signals from each of the sensors. This hybrid fusion method includes two quaternion Kalman filters (QKF), and an intelligent filter whose design is based on the Adaptive Neural Fuzzy Inference System (ANFIS) method. The simulation and test results show the proposed system has improved performance as compared with other systems.","PeriodicalId":405874,"journal":{"name":"2018 IEEE SENSORS","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Intelligent Filter for Accurate Subsurface Heading Estimation Using Multiple Integrated MEMS Sensors\",\"authors\":\"Huan-xin Liu, R. Shor, Simon S. Park\",\"doi\":\"10.1109/ICSENS.2018.8589900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a sensing system for subsurface application which includes a hybrid fusion methodology and two IMUs was developed. The system improves measurement reliability through the fusion of the signals from each of the sensors. This hybrid fusion method includes two quaternion Kalman filters (QKF), and an intelligent filter whose design is based on the Adaptive Neural Fuzzy Inference System (ANFIS) method. The simulation and test results show the proposed system has improved performance as compared with other systems.\",\"PeriodicalId\":405874,\"journal\":{\"name\":\"2018 IEEE SENSORS\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE SENSORS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSENS.2018.8589900\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE SENSORS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENS.2018.8589900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文开发了一种基于混合融合方法和两个imu的地下应用传感系统。该系统通过对各传感器信号的融合,提高了测量的可靠性。该混合融合方法包括两个四元数卡尔曼滤波器(QKF)和一个基于自适应神经模糊推理系统(ANFIS)方法设计的智能滤波器。仿真和测试结果表明,与其他系统相比,该系统具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent Filter for Accurate Subsurface Heading Estimation Using Multiple Integrated MEMS Sensors
In this paper, a sensing system for subsurface application which includes a hybrid fusion methodology and two IMUs was developed. The system improves measurement reliability through the fusion of the signals from each of the sensors. This hybrid fusion method includes two quaternion Kalman filters (QKF), and an intelligent filter whose design is based on the Adaptive Neural Fuzzy Inference System (ANFIS) method. The simulation and test results show the proposed system has improved performance as compared with other systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信