基于2d - cnn的电液静压执行器内漏故障诊断

Huiqi Ruan, Xingjian Ma, Qingchuan He, Jun Pan
{"title":"基于2d - cnn的电液静压执行器内漏故障诊断","authors":"Huiqi Ruan, Xingjian Ma, Qingchuan He, Jun Pan","doi":"10.1109/PHM-Yantai55411.2022.9942025","DOIUrl":null,"url":null,"abstract":"Electro-Hydrostatic Actuators (EHA) are used extensively to produce displacements and high forces in various industrial applications, such as aircraft and ships. The internal leakage of EHA can lead to economic loss and personal injury. Convolutional neural network (CNN) is a basic method of deep learning, which has strong autonomous learning capability. In this paper, a two-dimensional convolutional neural network (2D-CNN) based fault diagnosis method for EHA internal leakage is proposed. Firstly, the one-dimensional pressure signals collected by sensors are converted into two-dimensional signals, and then these two-dimensional signals are directly fed into a 2D-CNN model, features are extracted through convolution and pooling operations, and the model is optimized using the reset learning rate to improve the fault diagnosis accuracy of the model, and then the diagnostic results are output using a classifier. The results of the study show that the accuracy of this method in diagnosing the internal leakage of EHA reaches 95.75% Compared with the traditional 1D-CNN, the accuracy of this method in fault diagnosis has been improved to a large extent.","PeriodicalId":315994,"journal":{"name":"2022 Global Reliability and Prognostics and Health Management (PHM-Yantai)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2D-CNN-Based Fault Diagnosis of Internal Leakage in Electro-Hydrostatic Actuators\",\"authors\":\"Huiqi Ruan, Xingjian Ma, Qingchuan He, Jun Pan\",\"doi\":\"10.1109/PHM-Yantai55411.2022.9942025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electro-Hydrostatic Actuators (EHA) are used extensively to produce displacements and high forces in various industrial applications, such as aircraft and ships. The internal leakage of EHA can lead to economic loss and personal injury. Convolutional neural network (CNN) is a basic method of deep learning, which has strong autonomous learning capability. In this paper, a two-dimensional convolutional neural network (2D-CNN) based fault diagnosis method for EHA internal leakage is proposed. Firstly, the one-dimensional pressure signals collected by sensors are converted into two-dimensional signals, and then these two-dimensional signals are directly fed into a 2D-CNN model, features are extracted through convolution and pooling operations, and the model is optimized using the reset learning rate to improve the fault diagnosis accuracy of the model, and then the diagnostic results are output using a classifier. The results of the study show that the accuracy of this method in diagnosing the internal leakage of EHA reaches 95.75% Compared with the traditional 1D-CNN, the accuracy of this method in fault diagnosis has been improved to a large extent.\",\"PeriodicalId\":315994,\"journal\":{\"name\":\"2022 Global Reliability and Prognostics and Health Management (PHM-Yantai)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Global Reliability and Prognostics and Health Management (PHM-Yantai)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PHM-Yantai55411.2022.9942025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Global Reliability and Prognostics and Health Management (PHM-Yantai)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PHM-Yantai55411.2022.9942025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电-静液致动器(EHA)广泛用于各种工业应用,如飞机和船舶中产生位移和高力。EHA内部渗漏会造成经济损失和人身伤害。卷积神经网络(CNN)是深度学习的一种基本方法,具有很强的自主学习能力。提出了一种基于二维卷积神经网络(2D-CNN)的EHA内漏故障诊断方法。首先将传感器采集到的一维压力信号转换成二维信号,然后将这些二维信号直接馈送到2D-CNN模型中,通过卷积和池化操作提取特征,并利用重置学习率对模型进行优化,提高模型的故障诊断准确率,最后利用分类器输出诊断结果。研究结果表明,该方法诊断EHA内漏的准确率达到95.75%,与传统的1D-CNN相比,该方法在故障诊断中的准确率有了很大提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
2D-CNN-Based Fault Diagnosis of Internal Leakage in Electro-Hydrostatic Actuators
Electro-Hydrostatic Actuators (EHA) are used extensively to produce displacements and high forces in various industrial applications, such as aircraft and ships. The internal leakage of EHA can lead to economic loss and personal injury. Convolutional neural network (CNN) is a basic method of deep learning, which has strong autonomous learning capability. In this paper, a two-dimensional convolutional neural network (2D-CNN) based fault diagnosis method for EHA internal leakage is proposed. Firstly, the one-dimensional pressure signals collected by sensors are converted into two-dimensional signals, and then these two-dimensional signals are directly fed into a 2D-CNN model, features are extracted through convolution and pooling operations, and the model is optimized using the reset learning rate to improve the fault diagnosis accuracy of the model, and then the diagnostic results are output using a classifier. The results of the study show that the accuracy of this method in diagnosing the internal leakage of EHA reaches 95.75% Compared with the traditional 1D-CNN, the accuracy of this method in fault diagnosis has been improved to a large extent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信