基于简化Gabor小波的边缘检测

Wei Jiang, K. Lam, Ting-zhi Shen
{"title":"基于简化Gabor小波的边缘检测","authors":"Wei Jiang, K. Lam, Ting-zhi Shen","doi":"10.1109/ICNNSP.2008.4590418","DOIUrl":null,"url":null,"abstract":"Gabor wavelets (GWs) have been commonly used for extracting local features for various applications, such as recognition, tracking, and edge detection. However, extracting the Gabor features is computationally intensive, so the features may be impractical for real-time applications. In this paper, we propose a set of simplified version of Gabor wavelets (SGWs) for edge detection. Experimental results show that our SGW-based edge detection algorithm can achieve a similar performance level to that using GWs, while the runtime required for feature extraction using SGWs is faster than that with GWs with the use of the fast Fourier transform (FFT). When compared to the Canny and other conventional edge detection methods, our proposed method can achieve a better performance in the terms of detection accuracy and computational complexity.","PeriodicalId":250993,"journal":{"name":"2008 International Conference on Neural Networks and Signal Processing","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Edge detection using simplified Gabor wavelets\",\"authors\":\"Wei Jiang, K. Lam, Ting-zhi Shen\",\"doi\":\"10.1109/ICNNSP.2008.4590418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gabor wavelets (GWs) have been commonly used for extracting local features for various applications, such as recognition, tracking, and edge detection. However, extracting the Gabor features is computationally intensive, so the features may be impractical for real-time applications. In this paper, we propose a set of simplified version of Gabor wavelets (SGWs) for edge detection. Experimental results show that our SGW-based edge detection algorithm can achieve a similar performance level to that using GWs, while the runtime required for feature extraction using SGWs is faster than that with GWs with the use of the fast Fourier transform (FFT). When compared to the Canny and other conventional edge detection methods, our proposed method can achieve a better performance in the terms of detection accuracy and computational complexity.\",\"PeriodicalId\":250993,\"journal\":{\"name\":\"2008 International Conference on Neural Networks and Signal Processing\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Conference on Neural Networks and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNNSP.2008.4590418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Neural Networks and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNNSP.2008.4590418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

Gabor小波(GWs)通常用于提取各种应用的局部特征,例如识别,跟踪和边缘检测。然而,提取Gabor特征是计算密集型的,因此这些特征对于实时应用可能是不切实际的。在本文中,我们提出了一组简化版的Gabor小波(SGWs)用于边缘检测。实验结果表明,基于sgw的边缘检测算法可以达到与使用GWs相似的性能水平,而使用sgw进行特征提取所需的运行时间比使用快速傅里叶变换(FFT)的GWs更快。与Canny和其他传统边缘检测方法相比,本文方法在检测精度和计算复杂度方面都取得了更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Edge detection using simplified Gabor wavelets
Gabor wavelets (GWs) have been commonly used for extracting local features for various applications, such as recognition, tracking, and edge detection. However, extracting the Gabor features is computationally intensive, so the features may be impractical for real-time applications. In this paper, we propose a set of simplified version of Gabor wavelets (SGWs) for edge detection. Experimental results show that our SGW-based edge detection algorithm can achieve a similar performance level to that using GWs, while the runtime required for feature extraction using SGWs is faster than that with GWs with the use of the fast Fourier transform (FFT). When compared to the Canny and other conventional edge detection methods, our proposed method can achieve a better performance in the terms of detection accuracy and computational complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信