NP的强共不确定性下界不能证明是可行的

J. Pich, R. Santhanam
{"title":"NP的强共不确定性下界不能证明是可行的","authors":"J. Pich, R. Santhanam","doi":"10.1145/3406325.3451117","DOIUrl":null,"url":null,"abstract":"We show unconditionally that Cook’s theory PV formalizing poly-time reasoning cannot prove, for any non-deterministic poly-time machine M defining a language L(M), that L(M) is inapproximable by co-nondeterministic circuits of sub-exponential size. In fact, our unprovability result holds also for a theory which supports a fragment of Jeřábek’s theory of approximate counting APC1. We also show similar unconditional unprovability results for the conjecture of Rudich about the existence of super-bits.","PeriodicalId":132752,"journal":{"name":"Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing","volume":"155 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Strong co-nondeterministic lower bounds for NP cannot be proved feasibly\",\"authors\":\"J. Pich, R. Santhanam\",\"doi\":\"10.1145/3406325.3451117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show unconditionally that Cook’s theory PV formalizing poly-time reasoning cannot prove, for any non-deterministic poly-time machine M defining a language L(M), that L(M) is inapproximable by co-nondeterministic circuits of sub-exponential size. In fact, our unprovability result holds also for a theory which supports a fragment of Jeřábek’s theory of approximate counting APC1. We also show similar unconditional unprovability results for the conjecture of Rudich about the existence of super-bits.\",\"PeriodicalId\":132752,\"journal\":{\"name\":\"Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing\",\"volume\":\"155 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3406325.3451117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3406325.3451117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们无条件地证明Cook的理论PV形式化多时间推理不能证明,对于任何定义语言L(M)的非确定性多时间机器M, L(M)是由次指数大小的共不确定性电路不可逼近的。事实上,我们的不可证明性结果也适用于支持Jeřábek近似计数理论APC1片段的理论。对于Rudich关于超比特存在的猜想,我们也给出了类似的无条件不可证明性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strong co-nondeterministic lower bounds for NP cannot be proved feasibly
We show unconditionally that Cook’s theory PV formalizing poly-time reasoning cannot prove, for any non-deterministic poly-time machine M defining a language L(M), that L(M) is inapproximable by co-nondeterministic circuits of sub-exponential size. In fact, our unprovability result holds also for a theory which supports a fragment of Jeřábek’s theory of approximate counting APC1. We also show similar unconditional unprovability results for the conjecture of Rudich about the existence of super-bits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信