{"title":"NP的强共不确定性下界不能证明是可行的","authors":"J. Pich, R. Santhanam","doi":"10.1145/3406325.3451117","DOIUrl":null,"url":null,"abstract":"We show unconditionally that Cook’s theory PV formalizing poly-time reasoning cannot prove, for any non-deterministic poly-time machine M defining a language L(M), that L(M) is inapproximable by co-nondeterministic circuits of sub-exponential size. In fact, our unprovability result holds also for a theory which supports a fragment of Jeřábek’s theory of approximate counting APC1. We also show similar unconditional unprovability results for the conjecture of Rudich about the existence of super-bits.","PeriodicalId":132752,"journal":{"name":"Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing","volume":"155 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Strong co-nondeterministic lower bounds for NP cannot be proved feasibly\",\"authors\":\"J. Pich, R. Santhanam\",\"doi\":\"10.1145/3406325.3451117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show unconditionally that Cook’s theory PV formalizing poly-time reasoning cannot prove, for any non-deterministic poly-time machine M defining a language L(M), that L(M) is inapproximable by co-nondeterministic circuits of sub-exponential size. In fact, our unprovability result holds also for a theory which supports a fragment of Jeřábek’s theory of approximate counting APC1. We also show similar unconditional unprovability results for the conjecture of Rudich about the existence of super-bits.\",\"PeriodicalId\":132752,\"journal\":{\"name\":\"Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing\",\"volume\":\"155 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3406325.3451117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3406325.3451117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Strong co-nondeterministic lower bounds for NP cannot be proved feasibly
We show unconditionally that Cook’s theory PV formalizing poly-time reasoning cannot prove, for any non-deterministic poly-time machine M defining a language L(M), that L(M) is inapproximable by co-nondeterministic circuits of sub-exponential size. In fact, our unprovability result holds also for a theory which supports a fragment of Jeřábek’s theory of approximate counting APC1. We also show similar unconditional unprovability results for the conjecture of Rudich about the existence of super-bits.