用于人脸识别的最接近类内空间分类器

Wei Liu, Yunhong Wang, S. Li, T. Tan
{"title":"用于人脸识别的最接近类内空间分类器","authors":"Wei Liu, Yunhong Wang, S. Li, T. Tan","doi":"10.1109/ICPR.2004.1333819","DOIUrl":null,"url":null,"abstract":"We propose a novel classification method, called nearest intra-class space (NICS), for face recognition. In our method, the distribution of face patterns of each person is represented by the intra-class space to capture all intra-class variations. Then, a regular principal subspace is derived from each intra-class space using principal component analysis. The classification is based on the nearest weighted distance, combining distance-from-subspace and distance-in-subspace, between the query face and each intra-class subspace. Experimental results show that the NICS classifier outperforms other classifiers in terms of recognition performance.","PeriodicalId":335842,"journal":{"name":"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Nearest intra-class space classifier for face recognition\",\"authors\":\"Wei Liu, Yunhong Wang, S. Li, T. Tan\",\"doi\":\"10.1109/ICPR.2004.1333819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel classification method, called nearest intra-class space (NICS), for face recognition. In our method, the distribution of face patterns of each person is represented by the intra-class space to capture all intra-class variations. Then, a regular principal subspace is derived from each intra-class space using principal component analysis. The classification is based on the nearest weighted distance, combining distance-from-subspace and distance-in-subspace, between the query face and each intra-class subspace. Experimental results show that the NICS classifier outperforms other classifiers in terms of recognition performance.\",\"PeriodicalId\":335842,\"journal\":{\"name\":\"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2004.1333819\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2004.1333819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

我们提出了一种新的分类方法,称为最接近类内空间(NICS),用于人脸识别。在我们的方法中,每个人的面部模式分布由类内空间表示,以捕获所有类内变化。然后,利用主成分分析,从每个类内空间导出一个规则的主子空间。分类基于查询面与每个类内子空间之间的最近加权距离,结合子空间的距离和子空间中的距离。实验结果表明,该分类器在识别性能上优于其他分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nearest intra-class space classifier for face recognition
We propose a novel classification method, called nearest intra-class space (NICS), for face recognition. In our method, the distribution of face patterns of each person is represented by the intra-class space to capture all intra-class variations. Then, a regular principal subspace is derived from each intra-class space using principal component analysis. The classification is based on the nearest weighted distance, combining distance-from-subspace and distance-in-subspace, between the query face and each intra-class subspace. Experimental results show that the NICS classifier outperforms other classifiers in terms of recognition performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信