基于通用图形处理单元的多交会低推力任务优化

M. Massari, A. Wittig
{"title":"基于通用图形处理单元的多交会低推力任务优化","authors":"M. Massari, A. Wittig","doi":"10.2514/1.I010390","DOIUrl":null,"url":null,"abstract":"A massively parallel method for the identification of optimal sequences of targets in multiple-rendezvous low-thrust missions is presented. Given a list of possible targets, a global search of sequences compatible with the mission requirements is performed. To estimate the feasibility of each transfer, a heuristic model based on Lambert’s transfers is evaluated in parallel for each target, making use of commonly available general-purpose graphics processing units such as the Nvidia Tesla cards. The resulting sequences are ranked by user-specified criteria such as length or fuel consumption. The resulting preliminary sequences are then optimized to a full low-thrust trajectory using classical methods for each leg. The performance of the method is discussed as a function of various parameters of the algorithm. The efficiency of the general-purpose graphics processing unit implementation is demonstrated by comparing it with a traditional CPU-based branch-and-bound method. Finally, the algorithm is used to co...","PeriodicalId":179117,"journal":{"name":"J. Aerosp. Inf. Syst.","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Optimization of Multiple-Rendezvous Low-Thrust Missions on General-Purpose Graphics Processing Units\",\"authors\":\"M. Massari, A. Wittig\",\"doi\":\"10.2514/1.I010390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A massively parallel method for the identification of optimal sequences of targets in multiple-rendezvous low-thrust missions is presented. Given a list of possible targets, a global search of sequences compatible with the mission requirements is performed. To estimate the feasibility of each transfer, a heuristic model based on Lambert’s transfers is evaluated in parallel for each target, making use of commonly available general-purpose graphics processing units such as the Nvidia Tesla cards. The resulting sequences are ranked by user-specified criteria such as length or fuel consumption. The resulting preliminary sequences are then optimized to a full low-thrust trajectory using classical methods for each leg. The performance of the method is discussed as a function of various parameters of the algorithm. The efficiency of the general-purpose graphics processing unit implementation is demonstrated by comparing it with a traditional CPU-based branch-and-bound method. Finally, the algorithm is used to co...\",\"PeriodicalId\":179117,\"journal\":{\"name\":\"J. Aerosp. Inf. Syst.\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Aerosp. Inf. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2514/1.I010390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Aerosp. Inf. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/1.I010390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

提出了一种多交会低推力任务中目标最优序列的大规模并行识别方法。给定可能的目标列表,执行符合任务要求的序列的全局搜索。为了估计每个传输的可行性,基于Lambert传输的启发式模型对每个目标并行评估,利用通用的通用图形处理单元(如Nvidia Tesla卡)。生成的序列根据用户指定的标准(如长度或燃料消耗)进行排序。然后使用经典方法对每条腿优化得到一个完整的低推力轨迹。讨论了该方法的性能与算法各参数的关系。通过与传统的基于cpu的分支绑定方法的比较,证明了通用图形处理单元实现的效率。最后,将该算法应用于…
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of Multiple-Rendezvous Low-Thrust Missions on General-Purpose Graphics Processing Units
A massively parallel method for the identification of optimal sequences of targets in multiple-rendezvous low-thrust missions is presented. Given a list of possible targets, a global search of sequences compatible with the mission requirements is performed. To estimate the feasibility of each transfer, a heuristic model based on Lambert’s transfers is evaluated in parallel for each target, making use of commonly available general-purpose graphics processing units such as the Nvidia Tesla cards. The resulting sequences are ranked by user-specified criteria such as length or fuel consumption. The resulting preliminary sequences are then optimized to a full low-thrust trajectory using classical methods for each leg. The performance of the method is discussed as a function of various parameters of the algorithm. The efficiency of the general-purpose graphics processing unit implementation is demonstrated by comparing it with a traditional CPU-based branch-and-bound method. Finally, the algorithm is used to co...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信