{"title":"AC0不可预测性","authors":"Emanuele Viola","doi":"10.1145/3442362","DOIUrl":null,"url":null,"abstract":"We prove that for every distribution D on n bits with Shannon entropy ≥ n − a, at most O(2da logd+1g)/γ5 of the bits Di can be predicted with advantage γ by an AC0 circuit of size g and depth D that is a function of all of the bits of D except Di. This answers a question by Meir and Wigderson, who proved a corresponding result for decision trees. We also show that there are distributions D with entropy ≥ n − O(1) such that any subset of O(n/ log n) bits of D on can be distinguished from uniform by a circuit of depth 2 and size poly(n). This separates the notions of predictability and distinguishability in this context.","PeriodicalId":198744,"journal":{"name":"ACM Transactions on Computation Theory (TOCT)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"AC0 Unpredictability\",\"authors\":\"Emanuele Viola\",\"doi\":\"10.1145/3442362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that for every distribution D on n bits with Shannon entropy ≥ n − a, at most O(2da logd+1g)/γ5 of the bits Di can be predicted with advantage γ by an AC0 circuit of size g and depth D that is a function of all of the bits of D except Di. This answers a question by Meir and Wigderson, who proved a corresponding result for decision trees. We also show that there are distributions D with entropy ≥ n − O(1) such that any subset of O(n/ log n) bits of D on can be distinguished from uniform by a circuit of depth 2 and size poly(n). This separates the notions of predictability and distinguishability in this context.\",\"PeriodicalId\":198744,\"journal\":{\"name\":\"ACM Transactions on Computation Theory (TOCT)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Computation Theory (TOCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3442362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computation Theory (TOCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3442362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We prove that for every distribution D on n bits with Shannon entropy ≥ n − a, at most O(2da logd+1g)/γ5 of the bits Di can be predicted with advantage γ by an AC0 circuit of size g and depth D that is a function of all of the bits of D except Di. This answers a question by Meir and Wigderson, who proved a corresponding result for decision trees. We also show that there are distributions D with entropy ≥ n − O(1) such that any subset of O(n/ log n) bits of D on can be distinguished from uniform by a circuit of depth 2 and size poly(n). This separates the notions of predictability and distinguishability in this context.