预期值

B. Anderson
{"title":"预期值","authors":"B. Anderson","doi":"10.1117/3.2512268.ch27","DOIUrl":null,"url":null,"abstract":"Expectation Values Consider an ensemble of microscopic systems prepared in the same initial state \\(\\mid A \\rangle\\). Suppose a measurement of the observable \\(\\xi'\\) is made on each system. We know that each measurement yields the value \\(\\xi'\\) with probability \\(P(\\xi')\\). What is the mean value of the measurement? This quantity, which is generally referred to as the expectation value of \\(\\xi'\\), is given by \\((58)\\;\\;\\;\\;\\;\\ \\langle\\xi\\rangle = \\displaystyle \\sum^{}_{\\xi'} \\xi'P(\\xi') = \\displaystyle \\sum^{}_{\\xi'} \\xi' \\mid\\langle A\\mid\\ xi\\rangle\\mid^{2}\\) \\( = \\displaystyle \\sum^{}_{\\xi'} \\xi' \\langle A\\mid\\xi\\rangle\\langle \\xi'\\mid A\\rangle = \\displaystyle \\sum^{}_{\\xi'} \\xi' \\langle A\\mid\\xi\\mid\\xi'\\rangle\\langle \\xi'\\mid A\\rangle\\)","PeriodicalId":276724,"journal":{"name":"Field Guide to Quantum Mechanics","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Expectation Values\",\"authors\":\"B. Anderson\",\"doi\":\"10.1117/3.2512268.ch27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Expectation Values Consider an ensemble of microscopic systems prepared in the same initial state \\\\(\\\\mid A \\\\rangle\\\\). Suppose a measurement of the observable \\\\(\\\\xi'\\\\) is made on each system. We know that each measurement yields the value \\\\(\\\\xi'\\\\) with probability \\\\(P(\\\\xi')\\\\). What is the mean value of the measurement? This quantity, which is generally referred to as the expectation value of \\\\(\\\\xi'\\\\), is given by \\\\((58)\\\\;\\\\;\\\\;\\\\;\\\\;\\\\ \\\\langle\\\\xi\\\\rangle = \\\\displaystyle \\\\sum^{}_{\\\\xi'} \\\\xi'P(\\\\xi') = \\\\displaystyle \\\\sum^{}_{\\\\xi'} \\\\xi' \\\\mid\\\\langle A\\\\mid\\\\ xi\\\\rangle\\\\mid^{2}\\\\) \\\\( = \\\\displaystyle \\\\sum^{}_{\\\\xi'} \\\\xi' \\\\langle A\\\\mid\\\\xi\\\\rangle\\\\langle \\\\xi'\\\\mid A\\\\rangle = \\\\displaystyle \\\\sum^{}_{\\\\xi'} \\\\xi' \\\\langle A\\\\mid\\\\xi\\\\mid\\\\xi'\\\\rangle\\\\langle \\\\xi'\\\\mid A\\\\rangle\\\\)\",\"PeriodicalId\":276724,\"journal\":{\"name\":\"Field Guide to Quantum Mechanics\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Field Guide to Quantum Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/3.2512268.ch27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Field Guide to Quantum Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/3.2512268.ch27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

考虑在相同初始状态下制备的微观系统的集合\(\mid A \rangle\)。假设在每个系统上对可观察到的\(\xi'\)进行测量。我们知道每次测量产生的值\(\xi'\)的概率为\(P(\xi')\)。测量的平均值是多少?这个量通常称为\(\xi'\)的期望值,由式给出 \((58)\;\;\;\;\;\ \langle\xi\rangle = \displaystyle \sum^{}_{\xi'} \xi'P(\xi') = \displaystyle \sum^{}_{\xi'} \xi' \mid\langle A\mid\ xi\rangle\mid^{2}\) \( = \displaystyle \sum^{}_{\xi'} \xi' \langle A\mid\xi\rangle\langle \xi'\mid A\rangle = \displaystyle \sum^{}_{\xi'} \xi' \langle A\mid\xi\mid\xi'\rangle\langle \xi'\mid A\rangle\)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Expectation Values
Expectation Values Consider an ensemble of microscopic systems prepared in the same initial state \(\mid A \rangle\). Suppose a measurement of the observable \(\xi'\) is made on each system. We know that each measurement yields the value \(\xi'\) with probability \(P(\xi')\). What is the mean value of the measurement? This quantity, which is generally referred to as the expectation value of \(\xi'\), is given by \((58)\;\;\;\;\;\ \langle\xi\rangle = \displaystyle \sum^{}_{\xi'} \xi'P(\xi') = \displaystyle \sum^{}_{\xi'} \xi' \mid\langle A\mid\ xi\rangle\mid^{2}\) \( = \displaystyle \sum^{}_{\xi'} \xi' \langle A\mid\xi\rangle\langle \xi'\mid A\rangle = \displaystyle \sum^{}_{\xi'} \xi' \langle A\mid\xi\mid\xi'\rangle\langle \xi'\mid A\rangle\)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信