{"title":"对数正则对和拟对数正则对的相对跨度","authors":"O. Fujino","doi":"10.2422/2036-2145.202005_019","DOIUrl":null,"url":null,"abstract":"We establish a relative spannedness for log canonical pairs, which is a generalization of the basepoint-freeness for varieties with log-terminal singularities by Andreatta--Wiśniewski. Moreover, we establish a generalization for quasi-log canonical pairs.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"143 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A relative spannedness for log canonical pairs and quasi-log canonical pairs\",\"authors\":\"O. Fujino\",\"doi\":\"10.2422/2036-2145.202005_019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish a relative spannedness for log canonical pairs, which is a generalization of the basepoint-freeness for varieties with log-terminal singularities by Andreatta--Wiśniewski. Moreover, we establish a generalization for quasi-log canonical pairs.\",\"PeriodicalId\":278201,\"journal\":{\"name\":\"arXiv: Algebraic Geometry\",\"volume\":\"143 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2422/2036-2145.202005_019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2422/2036-2145.202005_019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A relative spannedness for log canonical pairs and quasi-log canonical pairs
We establish a relative spannedness for log canonical pairs, which is a generalization of the basepoint-freeness for varieties with log-terminal singularities by Andreatta--Wiśniewski. Moreover, we establish a generalization for quasi-log canonical pairs.