R. Chandramohan, Q. Ma, L. Wotherspoon, B. Bradley, M. Nayyerloo, S. Uma, M. Stephens
{"title":"2016年凯库拉地震下仪器建筑的响应。","authors":"R. Chandramohan, Q. Ma, L. Wotherspoon, B. Bradley, M. Nayyerloo, S. Uma, M. Stephens","doi":"10.5459/BNZSEE.50.2.237-252","DOIUrl":null,"url":null,"abstract":"Six buildings in the Wellington region and the upper South Island, instrumented as part of the GeoNet Building Instrumentation Programme, recorded strong motion data during the 2016 Kaikoura earthquake. The response of two of these buildings: the Bank of New Zealand (BNZ) Harbour Quays, and Ministry of Business, Innovation, and Employment (MBIE) buildings, are examined in detail. Their acceleration and displacement response was reconstructed from the recorded data, and their vibrational characteristics were examined by computing their frequency response functions. The location of the BNZ building in the CentrePort region on the Wellington waterfront, which experienced significant ground motion amplification in the 1–2 s period range due to site effects, resulted in the imposition of especially large demands on the building. The computed response of the two buildings are compared to the intensity of ground motions they experienced and the structural and nonstructural damage they suffered, in an effort to motivate the use of structural response data in the validation of performance objectives of building codes, structural modelling techniques, and fragility functions. Finally, the nature of challenges typically encountered in the interpretation of structural response data are highlighted.","PeriodicalId":343472,"journal":{"name":"Bulletin of the New Zealand National Society for Earthquake Engineering","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Response of instrumented buildings under the 2016 Kaikoura earthquake.\",\"authors\":\"R. Chandramohan, Q. Ma, L. Wotherspoon, B. Bradley, M. Nayyerloo, S. Uma, M. Stephens\",\"doi\":\"10.5459/BNZSEE.50.2.237-252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Six buildings in the Wellington region and the upper South Island, instrumented as part of the GeoNet Building Instrumentation Programme, recorded strong motion data during the 2016 Kaikoura earthquake. The response of two of these buildings: the Bank of New Zealand (BNZ) Harbour Quays, and Ministry of Business, Innovation, and Employment (MBIE) buildings, are examined in detail. Their acceleration and displacement response was reconstructed from the recorded data, and their vibrational characteristics were examined by computing their frequency response functions. The location of the BNZ building in the CentrePort region on the Wellington waterfront, which experienced significant ground motion amplification in the 1–2 s period range due to site effects, resulted in the imposition of especially large demands on the building. The computed response of the two buildings are compared to the intensity of ground motions they experienced and the structural and nonstructural damage they suffered, in an effort to motivate the use of structural response data in the validation of performance objectives of building codes, structural modelling techniques, and fragility functions. Finally, the nature of challenges typically encountered in the interpretation of structural response data are highlighted.\",\"PeriodicalId\":343472,\"journal\":{\"name\":\"Bulletin of the New Zealand National Society for Earthquake Engineering\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the New Zealand National Society for Earthquake Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5459/BNZSEE.50.2.237-252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the New Zealand National Society for Earthquake Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5459/BNZSEE.50.2.237-252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Response of instrumented buildings under the 2016 Kaikoura earthquake.
Six buildings in the Wellington region and the upper South Island, instrumented as part of the GeoNet Building Instrumentation Programme, recorded strong motion data during the 2016 Kaikoura earthquake. The response of two of these buildings: the Bank of New Zealand (BNZ) Harbour Quays, and Ministry of Business, Innovation, and Employment (MBIE) buildings, are examined in detail. Their acceleration and displacement response was reconstructed from the recorded data, and their vibrational characteristics were examined by computing their frequency response functions. The location of the BNZ building in the CentrePort region on the Wellington waterfront, which experienced significant ground motion amplification in the 1–2 s period range due to site effects, resulted in the imposition of especially large demands on the building. The computed response of the two buildings are compared to the intensity of ground motions they experienced and the structural and nonstructural damage they suffered, in an effort to motivate the use of structural response data in the validation of performance objectives of building codes, structural modelling techniques, and fragility functions. Finally, the nature of challenges typically encountered in the interpretation of structural response data are highlighted.