一类二阶非线性系统的稳定性定理及其在机器人中的应用

M. Grabbe, D. Dawson
{"title":"一类二阶非线性系统的稳定性定理及其在机器人中的应用","authors":"M. Grabbe, D. Dawson","doi":"10.1109/SECON.1992.202383","DOIUrl":null,"url":null,"abstract":"Optimal control theory is used to generate a feedback control which stabilizes a class of second-order nonlinear systems. Specifically, the Hamilton-Jacobi-Bellman (HJB) equation of dynamic programming is used to show that the control is the solution to a quadratic optimal control problem in which the second-order system serves as a dynamic constraint. The stability result follows from the fact that the solution to the HJB equation serves as a Lyapunov function for the given system. An application of this result to the trajectory tracking of a robot manipulator is given.<<ETX>>","PeriodicalId":230446,"journal":{"name":"Proceedings IEEE Southeastcon '92","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A stability theorem for a class of second order nonlinear systems with an application to robotics\",\"authors\":\"M. Grabbe, D. Dawson\",\"doi\":\"10.1109/SECON.1992.202383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimal control theory is used to generate a feedback control which stabilizes a class of second-order nonlinear systems. Specifically, the Hamilton-Jacobi-Bellman (HJB) equation of dynamic programming is used to show that the control is the solution to a quadratic optimal control problem in which the second-order system serves as a dynamic constraint. The stability result follows from the fact that the solution to the HJB equation serves as a Lyapunov function for the given system. An application of this result to the trajectory tracking of a robot manipulator is given.<<ETX>>\",\"PeriodicalId\":230446,\"journal\":{\"name\":\"Proceedings IEEE Southeastcon '92\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE Southeastcon '92\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SECON.1992.202383\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE Southeastcon '92","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON.1992.202383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

利用最优控制理论生成一类二阶非线性系统的反馈控制。具体来说,利用动态规划的Hamilton-Jacobi-Bellman (HJB)方程表明,该控制是二阶系统作为动态约束的二次最优控制问题的解。稳定性的结果来自于HJB方程的解作为给定系统的李雅普诺夫函数。给出了该结果在机械臂轨迹跟踪中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A stability theorem for a class of second order nonlinear systems with an application to robotics
Optimal control theory is used to generate a feedback control which stabilizes a class of second-order nonlinear systems. Specifically, the Hamilton-Jacobi-Bellman (HJB) equation of dynamic programming is used to show that the control is the solution to a quadratic optimal control problem in which the second-order system serves as a dynamic constraint. The stability result follows from the fact that the solution to the HJB equation serves as a Lyapunov function for the given system. An application of this result to the trajectory tracking of a robot manipulator is given.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信