纯工质和混合工质双压力有机朗肯循环的非设计性能比较分析

Yang Du, Long Ying, Muting Hao, Y. Huo, Pan Zhao, Jiangfeng Wang, Yiping Dai
{"title":"纯工质和混合工质双压力有机朗肯循环的非设计性能比较分析","authors":"Yang Du, Long Ying, Muting Hao, Y. Huo, Pan Zhao, Jiangfeng Wang, Yiping Dai","doi":"10.1115/GT2018-75442","DOIUrl":null,"url":null,"abstract":"Dual-pressure Organic Rankine Cycles (ORCs) driven by the low temperature heat source usually work under part-load conditions, and it is therefore essential to predict the off-design performance of such ORCs. This paper presents the off-design performance prediction of the dual-pressure ORC on the basis of the model including plate heat exchangers, axial turbines and a centrifugal pump. Pure working fluid R600a and the mixture R245fa/R600a are compared. The sliding pressure operation strategy is considered under off-design conditions. The results indicate that under the design hot water parameters (hot water 140 °C, 64.87 kg/s), compared with the single-pressure ORC using R600a, the dual-pressure ORC using R600a shows a 9.57% higher net power and a 17.32% higher heat transfer area. Furthermore, the dual-pressure ORC with the mixture R245fa/R600a (0.42/0.58 mass fraction) shows a 1.04% higher net power and a 3.87% higher heat transfer area than the dual-pressure ORC using R600a under the design hot water parameters. In the dual-pressure ORC, the rotational speed of the high-pressure pump is more strongly influenced by the inlet temperature of hot water than that of the low-pressure pump. In addition, when the mass flow rate ratio of hot water or the inlet temperature of hot water increases, the difference of the net power between the dual-pressure ORC using the proposed mixture R245fa/R600a (0.42/0.58 mass fraction) and that using pure R600a increases.","PeriodicalId":131179,"journal":{"name":"Volume 3: Coal, Biomass, and Alternative Fuels; Cycle Innovations; Electric Power; Industrial and Cogeneration; Organic Rankine Cycle Power Systems","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Off-Design Performance Comparative Analysis Between Dual-Pressure Organic Rankine Cycles Using Pure and Mixture Working Fluids\",\"authors\":\"Yang Du, Long Ying, Muting Hao, Y. Huo, Pan Zhao, Jiangfeng Wang, Yiping Dai\",\"doi\":\"10.1115/GT2018-75442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dual-pressure Organic Rankine Cycles (ORCs) driven by the low temperature heat source usually work under part-load conditions, and it is therefore essential to predict the off-design performance of such ORCs. This paper presents the off-design performance prediction of the dual-pressure ORC on the basis of the model including plate heat exchangers, axial turbines and a centrifugal pump. Pure working fluid R600a and the mixture R245fa/R600a are compared. The sliding pressure operation strategy is considered under off-design conditions. The results indicate that under the design hot water parameters (hot water 140 °C, 64.87 kg/s), compared with the single-pressure ORC using R600a, the dual-pressure ORC using R600a shows a 9.57% higher net power and a 17.32% higher heat transfer area. Furthermore, the dual-pressure ORC with the mixture R245fa/R600a (0.42/0.58 mass fraction) shows a 1.04% higher net power and a 3.87% higher heat transfer area than the dual-pressure ORC using R600a under the design hot water parameters. In the dual-pressure ORC, the rotational speed of the high-pressure pump is more strongly influenced by the inlet temperature of hot water than that of the low-pressure pump. In addition, when the mass flow rate ratio of hot water or the inlet temperature of hot water increases, the difference of the net power between the dual-pressure ORC using the proposed mixture R245fa/R600a (0.42/0.58 mass fraction) and that using pure R600a increases.\",\"PeriodicalId\":131179,\"journal\":{\"name\":\"Volume 3: Coal, Biomass, and Alternative Fuels; Cycle Innovations; Electric Power; Industrial and Cogeneration; Organic Rankine Cycle Power Systems\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 3: Coal, Biomass, and Alternative Fuels; Cycle Innovations; Electric Power; Industrial and Cogeneration; Organic Rankine Cycle Power Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/GT2018-75442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Coal, Biomass, and Alternative Fuels; Cycle Innovations; Electric Power; Industrial and Cogeneration; Organic Rankine Cycle Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/GT2018-75442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

低温热源驱动的双压力有机朗肯循环(orc)通常在部分负荷工况下工作,因此对其非设计性能进行预测是十分必要的。本文在包括板式换热器、轴流涡轮机和离心泵的模型的基础上,对双压ORC的非设计性能进行了预测。比较了纯工质R600a和混合工质R245fa/R600a。考虑了非设计工况下的滑压作业策略。结果表明:在设计热水参数(热水140℃,64.87 kg/s)下,与采用R600a的单压ORC相比,采用R600a的双压ORC净功率提高9.57%,换热面积提高17.32%;在设计热水参数下,R245fa/R600a混合物(质量分数为0.42/0.58)的双压ORC净功率比R600a的双压ORC高1.04%,换热面积高3.87%。在双压ORC中,高压泵转速受热水入口温度的影响比对低压泵转速的影响更大。此外,随着热水质量流量比或热水入口温度的增加,使用R245fa/R600a(0.42/0.58质量分数)的双压ORC与使用纯R600a的双压ORC的净功率差增大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Off-Design Performance Comparative Analysis Between Dual-Pressure Organic Rankine Cycles Using Pure and Mixture Working Fluids
Dual-pressure Organic Rankine Cycles (ORCs) driven by the low temperature heat source usually work under part-load conditions, and it is therefore essential to predict the off-design performance of such ORCs. This paper presents the off-design performance prediction of the dual-pressure ORC on the basis of the model including plate heat exchangers, axial turbines and a centrifugal pump. Pure working fluid R600a and the mixture R245fa/R600a are compared. The sliding pressure operation strategy is considered under off-design conditions. The results indicate that under the design hot water parameters (hot water 140 °C, 64.87 kg/s), compared with the single-pressure ORC using R600a, the dual-pressure ORC using R600a shows a 9.57% higher net power and a 17.32% higher heat transfer area. Furthermore, the dual-pressure ORC with the mixture R245fa/R600a (0.42/0.58 mass fraction) shows a 1.04% higher net power and a 3.87% higher heat transfer area than the dual-pressure ORC using R600a under the design hot water parameters. In the dual-pressure ORC, the rotational speed of the high-pressure pump is more strongly influenced by the inlet temperature of hot water than that of the low-pressure pump. In addition, when the mass flow rate ratio of hot water or the inlet temperature of hot water increases, the difference of the net power between the dual-pressure ORC using the proposed mixture R245fa/R600a (0.42/0.58 mass fraction) and that using pure R600a increases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信