Sara Pérez-Carabaza, V. Syrris, P. Kempeneers, P. Soille
{"title":"基于时间卷积神经网络的Sentinel-2时间序列作物分类","authors":"Sara Pérez-Carabaza, V. Syrris, P. Kempeneers, P. Soille","doi":"10.1109/IGARSS47720.2021.9554358","DOIUrl":null,"url":null,"abstract":"Automated crop identification tools are of interest to a wide range of applications related to the environment and agriculture including the monitoring of related policies such as the European Common Agriculture Policy. In this context, this work presents a parcel-based crop classification system which leverages on 1D convolutional neural network supervised learning capacity. For the training and evaluation of the model, we employ open and free data: (i) time series of Sentinel-2 optical data selected to cover the crop season of one year, and (ii) a cadastre-derived database providing detailed delineation of parcels. By considering the most dominant crop types and the temporal features of the optical data, the proposed lightweight approach discriminates a considerable number of crops with high accuracy.","PeriodicalId":315312,"journal":{"name":"2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS","volume":"143 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Crop Classification from Sentinel-2 Time Series with Temporal Convolutional Neural Networks\",\"authors\":\"Sara Pérez-Carabaza, V. Syrris, P. Kempeneers, P. Soille\",\"doi\":\"10.1109/IGARSS47720.2021.9554358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automated crop identification tools are of interest to a wide range of applications related to the environment and agriculture including the monitoring of related policies such as the European Common Agriculture Policy. In this context, this work presents a parcel-based crop classification system which leverages on 1D convolutional neural network supervised learning capacity. For the training and evaluation of the model, we employ open and free data: (i) time series of Sentinel-2 optical data selected to cover the crop season of one year, and (ii) a cadastre-derived database providing detailed delineation of parcels. By considering the most dominant crop types and the temporal features of the optical data, the proposed lightweight approach discriminates a considerable number of crops with high accuracy.\",\"PeriodicalId\":315312,\"journal\":{\"name\":\"2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS\",\"volume\":\"143 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS47720.2021.9554358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS47720.2021.9554358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Crop Classification from Sentinel-2 Time Series with Temporal Convolutional Neural Networks
Automated crop identification tools are of interest to a wide range of applications related to the environment and agriculture including the monitoring of related policies such as the European Common Agriculture Policy. In this context, this work presents a parcel-based crop classification system which leverages on 1D convolutional neural network supervised learning capacity. For the training and evaluation of the model, we employ open and free data: (i) time series of Sentinel-2 optical data selected to cover the crop season of one year, and (ii) a cadastre-derived database providing detailed delineation of parcels. By considering the most dominant crop types and the temporal features of the optical data, the proposed lightweight approach discriminates a considerable number of crops with high accuracy.