基于时间卷积神经网络的Sentinel-2时间序列作物分类

Sara Pérez-Carabaza, V. Syrris, P. Kempeneers, P. Soille
{"title":"基于时间卷积神经网络的Sentinel-2时间序列作物分类","authors":"Sara Pérez-Carabaza, V. Syrris, P. Kempeneers, P. Soille","doi":"10.1109/IGARSS47720.2021.9554358","DOIUrl":null,"url":null,"abstract":"Automated crop identification tools are of interest to a wide range of applications related to the environment and agriculture including the monitoring of related policies such as the European Common Agriculture Policy. In this context, this work presents a parcel-based crop classification system which leverages on 1D convolutional neural network supervised learning capacity. For the training and evaluation of the model, we employ open and free data: (i) time series of Sentinel-2 optical data selected to cover the crop season of one year, and (ii) a cadastre-derived database providing detailed delineation of parcels. By considering the most dominant crop types and the temporal features of the optical data, the proposed lightweight approach discriminates a considerable number of crops with high accuracy.","PeriodicalId":315312,"journal":{"name":"2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS","volume":"143 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Crop Classification from Sentinel-2 Time Series with Temporal Convolutional Neural Networks\",\"authors\":\"Sara Pérez-Carabaza, V. Syrris, P. Kempeneers, P. Soille\",\"doi\":\"10.1109/IGARSS47720.2021.9554358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automated crop identification tools are of interest to a wide range of applications related to the environment and agriculture including the monitoring of related policies such as the European Common Agriculture Policy. In this context, this work presents a parcel-based crop classification system which leverages on 1D convolutional neural network supervised learning capacity. For the training and evaluation of the model, we employ open and free data: (i) time series of Sentinel-2 optical data selected to cover the crop season of one year, and (ii) a cadastre-derived database providing detailed delineation of parcels. By considering the most dominant crop types and the temporal features of the optical data, the proposed lightweight approach discriminates a considerable number of crops with high accuracy.\",\"PeriodicalId\":315312,\"journal\":{\"name\":\"2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS\",\"volume\":\"143 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS47720.2021.9554358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS47720.2021.9554358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

自动化作物识别工具对与环境和农业相关的广泛应用感兴趣,包括监测相关政策,如欧洲共同农业政策。在此背景下,本工作提出了一个基于包裹的作物分类系统,该系统利用1D卷积神经网络监督学习能力。为了对模型进行训练和评估,我们使用了开放和免费的数据:(i)选择覆盖一年作物季节的Sentinel-2光学数据的时间序列,以及(ii)提供地块详细描绘的地籍衍生数据库。通过考虑最主要的作物类型和光学数据的时间特征,提出的轻量化方法能够以较高的精度区分相当数量的作物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Crop Classification from Sentinel-2 Time Series with Temporal Convolutional Neural Networks
Automated crop identification tools are of interest to a wide range of applications related to the environment and agriculture including the monitoring of related policies such as the European Common Agriculture Policy. In this context, this work presents a parcel-based crop classification system which leverages on 1D convolutional neural network supervised learning capacity. For the training and evaluation of the model, we employ open and free data: (i) time series of Sentinel-2 optical data selected to cover the crop season of one year, and (ii) a cadastre-derived database providing detailed delineation of parcels. By considering the most dominant crop types and the temporal features of the optical data, the proposed lightweight approach discriminates a considerable number of crops with high accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信