基于边缘计算的无人机带宽高效实时视频分析

Junjue Wang, Ziqiang Feng, Zhuo Chen, S. George, Mihir Bala, P. Pillai, Shao-Wen Yang, M. Satyanarayanan
{"title":"基于边缘计算的无人机带宽高效实时视频分析","authors":"Junjue Wang, Ziqiang Feng, Zhuo Chen, S. George, Mihir Bala, P. Pillai, Shao-Wen Yang, M. Satyanarayanan","doi":"10.1109/SEC.2018.00019","DOIUrl":null,"url":null,"abstract":"Real-time video analytics on small autonomous drones poses several difficult challenges at the intersection of wireless bandwidth, processing capacity, energy consumption, result accuracy, and timeliness of results. In response to these challenges, we describe four strategies to build an adaptive computer vision pipeline for search tasks in domains such as search-and-rescue, surveillance, and wildlife conservation. Our experimental results show that a judicious combination of drone-based processing and edge-based processing can save substantial wireless bandwidth and thus improve scalability, without compromising result accuracy or result latency.","PeriodicalId":376439,"journal":{"name":"2018 IEEE/ACM Symposium on Edge Computing (SEC)","volume":"435 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"158","resultStr":"{\"title\":\"Bandwidth-Efficient Live Video Analytics for Drones Via Edge Computing\",\"authors\":\"Junjue Wang, Ziqiang Feng, Zhuo Chen, S. George, Mihir Bala, P. Pillai, Shao-Wen Yang, M. Satyanarayanan\",\"doi\":\"10.1109/SEC.2018.00019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real-time video analytics on small autonomous drones poses several difficult challenges at the intersection of wireless bandwidth, processing capacity, energy consumption, result accuracy, and timeliness of results. In response to these challenges, we describe four strategies to build an adaptive computer vision pipeline for search tasks in domains such as search-and-rescue, surveillance, and wildlife conservation. Our experimental results show that a judicious combination of drone-based processing and edge-based processing can save substantial wireless bandwidth and thus improve scalability, without compromising result accuracy or result latency.\",\"PeriodicalId\":376439,\"journal\":{\"name\":\"2018 IEEE/ACM Symposium on Edge Computing (SEC)\",\"volume\":\"435 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"158\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/ACM Symposium on Edge Computing (SEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEC.2018.00019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEC.2018.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 158

摘要

小型自主无人机上的实时视频分析在无线带宽、处理能力、能耗、结果准确性和结果及时性的交叉点上提出了几个困难的挑战。为了应对这些挑战,我们描述了四种策略来构建自适应计算机视觉管道,用于搜索和救援,监视和野生动物保护等领域的搜索任务。我们的实验结果表明,基于无人机的处理和基于边缘的处理的明智组合可以节省大量的无线带宽,从而提高可扩展性,而不会影响结果的准确性或结果延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bandwidth-Efficient Live Video Analytics for Drones Via Edge Computing
Real-time video analytics on small autonomous drones poses several difficult challenges at the intersection of wireless bandwidth, processing capacity, energy consumption, result accuracy, and timeliness of results. In response to these challenges, we describe four strategies to build an adaptive computer vision pipeline for search tasks in domains such as search-and-rescue, surveillance, and wildlife conservation. Our experimental results show that a judicious combination of drone-based processing and edge-based processing can save substantial wireless bandwidth and thus improve scalability, without compromising result accuracy or result latency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信