多调度语言的自动随机测试

Simon M. Poulding, R. Feldt
{"title":"多调度语言的自动随机测试","authors":"Simon M. Poulding, R. Feldt","doi":"10.1109/ICST.2017.37","DOIUrl":null,"url":null,"abstract":"In programming languages that use multiple dispatch, a single function can have multiple implementations, each of which may specialise the function's operation. Which one of these implementations to execute is determined by the data types of all the arguments to the function. Effective testing of functions that use multiple dispatch therefore requires diverse test inputs in terms of the data types of the input's arguments as well as their values. In this paper we describe an approach for generating test inputs where both the values and types are chosen probabilistically. The approach uses reflection to automatically determine how to create inputs with the desired types, and dynamically updates the probability distribution from which types are sampled in order to improve both the test efficiency and efficacy. We evaluate the technique on 247 methods across 9 built-in functions of Julia, a technical computing language that applies multiple dispatch at runtime. In the process, we identify three real faults in these widely-used functions.","PeriodicalId":112258,"journal":{"name":"2017 IEEE International Conference on Software Testing, Verification and Validation (ICST)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Automated Random Testing in Multiple Dispatch Languages\",\"authors\":\"Simon M. Poulding, R. Feldt\",\"doi\":\"10.1109/ICST.2017.37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In programming languages that use multiple dispatch, a single function can have multiple implementations, each of which may specialise the function's operation. Which one of these implementations to execute is determined by the data types of all the arguments to the function. Effective testing of functions that use multiple dispatch therefore requires diverse test inputs in terms of the data types of the input's arguments as well as their values. In this paper we describe an approach for generating test inputs where both the values and types are chosen probabilistically. The approach uses reflection to automatically determine how to create inputs with the desired types, and dynamically updates the probability distribution from which types are sampled in order to improve both the test efficiency and efficacy. We evaluate the technique on 247 methods across 9 built-in functions of Julia, a technical computing language that applies multiple dispatch at runtime. In the process, we identify three real faults in these widely-used functions.\",\"PeriodicalId\":112258,\"journal\":{\"name\":\"2017 IEEE International Conference on Software Testing, Verification and Validation (ICST)\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Software Testing, Verification and Validation (ICST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICST.2017.37\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Software Testing, Verification and Validation (ICST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICST.2017.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在使用多分派的编程语言中,一个函数可以有多个实现,每个实现都可以专门化该函数的操作。执行哪一种实现由函数所有参数的数据类型决定。因此,使用多重分派的函数的有效测试需要根据输入参数及其值的数据类型进行不同的测试输入。在本文中,我们描述了一种生成测试输入的方法,其中值和类型都是概率选择的。该方法使用反射来自动确定如何创建具有所需类型的输入,并动态更新采样类型的概率分布,以提高测试效率和有效性。我们在Julia的9个内置函数中的247个方法上评估了该技术,Julia是一种技术计算语言,在运行时应用多个调度。在此过程中,我们发现了这些广泛使用的函数中的三个实际故障。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated Random Testing in Multiple Dispatch Languages
In programming languages that use multiple dispatch, a single function can have multiple implementations, each of which may specialise the function's operation. Which one of these implementations to execute is determined by the data types of all the arguments to the function. Effective testing of functions that use multiple dispatch therefore requires diverse test inputs in terms of the data types of the input's arguments as well as their values. In this paper we describe an approach for generating test inputs where both the values and types are chosen probabilistically. The approach uses reflection to automatically determine how to create inputs with the desired types, and dynamically updates the probability distribution from which types are sampled in order to improve both the test efficiency and efficacy. We evaluate the technique on 247 methods across 9 built-in functions of Julia, a technical computing language that applies multiple dispatch at runtime. In the process, we identify three real faults in these widely-used functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信