基于统计参数提取与分类的正常与心脏杂音的鉴别

Othmane El Badlaoui, A. Hammouch
{"title":"基于统计参数提取与分类的正常与心脏杂音的鉴别","authors":"Othmane El Badlaoui, A. Hammouch","doi":"10.1109/EBBT.2017.7956771","DOIUrl":null,"url":null,"abstract":"In this work, a new method for discrimination between normal and heart murmurs sound is presented. Statistical parameters, such as standard deviation (SD), are extracted from two datasets of heartbeats. Several classification technics, such as Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Naïve Bayes (NB), discriminative analysis, and classification tree, are used. Simulation results obtained from yielding methods are compared and discussed. The developed method (scheme) return good results from deferent dataset. Results obtained by using different classification methods versus two dataset are, significantly, accurate compared to the existing methods.","PeriodicalId":293165,"journal":{"name":"2017 Electric Electronics, Computer Science, Biomedical Engineerings' Meeting (EBBT)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Discrimination between normal and heart murmurs sound, based on statistical parameters extraction and classification\",\"authors\":\"Othmane El Badlaoui, A. Hammouch\",\"doi\":\"10.1109/EBBT.2017.7956771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a new method for discrimination between normal and heart murmurs sound is presented. Statistical parameters, such as standard deviation (SD), are extracted from two datasets of heartbeats. Several classification technics, such as Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Naïve Bayes (NB), discriminative analysis, and classification tree, are used. Simulation results obtained from yielding methods are compared and discussed. The developed method (scheme) return good results from deferent dataset. Results obtained by using different classification methods versus two dataset are, significantly, accurate compared to the existing methods.\",\"PeriodicalId\":293165,\"journal\":{\"name\":\"2017 Electric Electronics, Computer Science, Biomedical Engineerings' Meeting (EBBT)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Electric Electronics, Computer Science, Biomedical Engineerings' Meeting (EBBT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EBBT.2017.7956771\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Electric Electronics, Computer Science, Biomedical Engineerings' Meeting (EBBT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EBBT.2017.7956771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种区分正常杂音和心脏杂音的新方法。从两个心跳数据集中提取统计参数,如标准差(SD)。使用了支持向量机(SVM)、k近邻(KNN)、Naïve贝叶斯(NB)、判别分析和分类树等分类技术。对各种屈服方法的仿真结果进行了比较和讨论。所开发的方法(方案)从不同的数据集返回良好的结果。与现有方法相比,使用不同的分类方法对两个数据集进行分类得到的结果具有显著的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discrimination between normal and heart murmurs sound, based on statistical parameters extraction and classification
In this work, a new method for discrimination between normal and heart murmurs sound is presented. Statistical parameters, such as standard deviation (SD), are extracted from two datasets of heartbeats. Several classification technics, such as Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Naïve Bayes (NB), discriminative analysis, and classification tree, are used. Simulation results obtained from yielding methods are compared and discussed. The developed method (scheme) return good results from deferent dataset. Results obtained by using different classification methods versus two dataset are, significantly, accurate compared to the existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信