带反馈的擦除队列-信道:容量最大化的最优传输控制

K. Varma, K. Jagannathan
{"title":"带反馈的擦除队列-信道:容量最大化的最优传输控制","authors":"K. Varma, K. Jagannathan","doi":"10.1109/ITW55543.2023.10161665","DOIUrl":null,"url":null,"abstract":"A queue-channel is a model that captures waiting time-dependent degradation of information bits—a scenario motivated by quantum communications and delay-sensitive streaming. Recent work has characterised the capacity of the erasure queue-channel [1], and other noise models encountered in quantum communications. In this paper, we study an erasure queue-channel with feedback, and ask after the optimal transmission strategy to minimize waiting-induced erasures. Specifically, we assume that instantaneous feedback of queue-length (or of the queue-channel output) is available at the transmitter, which can modulate the rate of Poisson transmissions into the queue-channel. We pose an optimal control problem using HJB-style equations to maximize the information capacity, when the transmitter can choose from a bounded set of transmission rates. We show (under a numerically verifiable condition) that the optimal transmission policy is a single-threshold policy of the bang-bang type. In other words, transmitting at the maximum (minimum) possible rate when the queue is below (above) a threshold, maximizes the information capacity of the erasure queue-channel with feedback.","PeriodicalId":439800,"journal":{"name":"2023 IEEE Information Theory Workshop (ITW)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Erasure Queue-Channel with Feedback: Optimal Transmission Control to Maximize Capacity\",\"authors\":\"K. Varma, K. Jagannathan\",\"doi\":\"10.1109/ITW55543.2023.10161665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A queue-channel is a model that captures waiting time-dependent degradation of information bits—a scenario motivated by quantum communications and delay-sensitive streaming. Recent work has characterised the capacity of the erasure queue-channel [1], and other noise models encountered in quantum communications. In this paper, we study an erasure queue-channel with feedback, and ask after the optimal transmission strategy to minimize waiting-induced erasures. Specifically, we assume that instantaneous feedback of queue-length (or of the queue-channel output) is available at the transmitter, which can modulate the rate of Poisson transmissions into the queue-channel. We pose an optimal control problem using HJB-style equations to maximize the information capacity, when the transmitter can choose from a bounded set of transmission rates. We show (under a numerically verifiable condition) that the optimal transmission policy is a single-threshold policy of the bang-bang type. In other words, transmitting at the maximum (minimum) possible rate when the queue is below (above) a threshold, maximizes the information capacity of the erasure queue-channel with feedback.\",\"PeriodicalId\":439800,\"journal\":{\"name\":\"2023 IEEE Information Theory Workshop (ITW)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Information Theory Workshop (ITW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW55543.2023.10161665\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW55543.2023.10161665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

队列通道是一种模型,它捕获与等待时间相关的信息位退化——这是一种由量子通信和延迟敏感流驱动的场景。最近的工作描述了擦除队列信道的容量[1],以及量子通信中遇到的其他噪声模型。本文研究了一种带反馈的擦除队列信道,并探讨了最小化等待引起的擦除的最优传输策略。具体地说,我们假设在发送端可以获得队列长度(或队列信道输出)的瞬时反馈,这可以调制进入队列信道的泊松传输速率。当发射机可以从一组有界的传输速率中进行选择时,我们提出了一个利用hjb型方程使信息容量最大化的最优控制问题。我们证明(在数值可验证的条件下)最优传输策略是bang-bang型的单阈值策略。换句话说,当队列低于(高于)阈值时,以最大(最小)可能的速率传输,可以最大化带有反馈的擦除队列信道的信息容量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Erasure Queue-Channel with Feedback: Optimal Transmission Control to Maximize Capacity
A queue-channel is a model that captures waiting time-dependent degradation of information bits—a scenario motivated by quantum communications and delay-sensitive streaming. Recent work has characterised the capacity of the erasure queue-channel [1], and other noise models encountered in quantum communications. In this paper, we study an erasure queue-channel with feedback, and ask after the optimal transmission strategy to minimize waiting-induced erasures. Specifically, we assume that instantaneous feedback of queue-length (or of the queue-channel output) is available at the transmitter, which can modulate the rate of Poisson transmissions into the queue-channel. We pose an optimal control problem using HJB-style equations to maximize the information capacity, when the transmitter can choose from a bounded set of transmission rates. We show (under a numerically verifiable condition) that the optimal transmission policy is a single-threshold policy of the bang-bang type. In other words, transmitting at the maximum (minimum) possible rate when the queue is below (above) a threshold, maximizes the information capacity of the erasure queue-channel with feedback.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信