粒子群优化与回归分析- 1

S. Mohanty
{"title":"粒子群优化与回归分析- 1","authors":"S. Mohanty","doi":"10.1080/21672857.2012.11519700","DOIUrl":null,"url":null,"abstract":"Abstract Particle Swarm Optimization (PSO) is now widely used in many problems that require global optimization of high-dimensional and highly multi-modal functions. However, PSO has not yet seen widespread use in astronomical data analysis even though optimization problems in this field have become increasingly complex. In this two-part article, we first provide an overview of the PSO method in the concrete context of a ubiquitous problem in astronomy, namely, regression analysis. In particular, we consider the problem of optimizing the placement of knots in regression based on cubic splines (spline smoothing). The second part will describe an in-depth investigation of PSO in some realistic data analysis challenges.","PeriodicalId":204186,"journal":{"name":"Astronomical Review","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Particle Swarm Optimization and regression analysis – I\",\"authors\":\"S. Mohanty\",\"doi\":\"10.1080/21672857.2012.11519700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Particle Swarm Optimization (PSO) is now widely used in many problems that require global optimization of high-dimensional and highly multi-modal functions. However, PSO has not yet seen widespread use in astronomical data analysis even though optimization problems in this field have become increasingly complex. In this two-part article, we first provide an overview of the PSO method in the concrete context of a ubiquitous problem in astronomy, namely, regression analysis. In particular, we consider the problem of optimizing the placement of knots in regression based on cubic splines (spline smoothing). The second part will describe an in-depth investigation of PSO in some realistic data analysis challenges.\",\"PeriodicalId\":204186,\"journal\":{\"name\":\"Astronomical Review\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomical Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21672857.2012.11519700\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomical Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21672857.2012.11519700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

摘要粒子群算法(PSO)广泛应用于高维、高多模态函数的全局优化问题。然而,尽管该领域的优化问题已经变得越来越复杂,但粒子群算法尚未在天文数据分析中得到广泛应用。在这篇由两部分组成的文章中,我们首先在天文学中普遍存在的一个问题,即回归分析的具体背景下概述了粒子群方法。特别地,我们考虑了基于三次样条(样条平滑)的回归中优化结点位置的问题。第二部分将描述PSO在一些现实数据分析挑战中的深入调查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Particle Swarm Optimization and regression analysis – I
Abstract Particle Swarm Optimization (PSO) is now widely used in many problems that require global optimization of high-dimensional and highly multi-modal functions. However, PSO has not yet seen widespread use in astronomical data analysis even though optimization problems in this field have become increasingly complex. In this two-part article, we first provide an overview of the PSO method in the concrete context of a ubiquitous problem in astronomy, namely, regression analysis. In particular, we consider the problem of optimizing the placement of knots in regression based on cubic splines (spline smoothing). The second part will describe an in-depth investigation of PSO in some realistic data analysis challenges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信