使用BERT的社交媒体评论情感分析仪表板

Madhav Agarwal, P. Chaudhary, S. Singh, Charvi Vij
{"title":"使用BERT的社交媒体评论情感分析仪表板","authors":"Madhav Agarwal, P. Chaudhary, S. Singh, Charvi Vij","doi":"10.1109/InCACCT57535.2023.10141803","DOIUrl":null,"url":null,"abstract":"The automatic extraction of positive or negative attitude expressions from text, known as sentiment analysis, has drawn a lot of interest from academics in the last 10 years. They hold both favorable and unfavorable opinions on various individuals, groups, locations, occasions, and concepts. It is now feasible to start extracting feelings from social media, thanks to the tools given by NLP and machine learning, coupled with othermethods to work with massive quantities of text. In this work, we examine some of the difficulties in sentiment extraction, some of the methods used to overcome these difficulties, and our method. In this study, we explore the usage of Bidirectional Encoder Representations from Transformers (BERT) models for sentiment analysis on data generated on social media platforms like Twitter, YouTube, etc.","PeriodicalId":405272,"journal":{"name":"2023 International Conference on Advancement in Computation & Computer Technologies (InCACCT)","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sentiment Analysis Dashboard for Socia Media comments using BERT\",\"authors\":\"Madhav Agarwal, P. Chaudhary, S. Singh, Charvi Vij\",\"doi\":\"10.1109/InCACCT57535.2023.10141803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The automatic extraction of positive or negative attitude expressions from text, known as sentiment analysis, has drawn a lot of interest from academics in the last 10 years. They hold both favorable and unfavorable opinions on various individuals, groups, locations, occasions, and concepts. It is now feasible to start extracting feelings from social media, thanks to the tools given by NLP and machine learning, coupled with othermethods to work with massive quantities of text. In this work, we examine some of the difficulties in sentiment extraction, some of the methods used to overcome these difficulties, and our method. In this study, we explore the usage of Bidirectional Encoder Representations from Transformers (BERT) models for sentiment analysis on data generated on social media platforms like Twitter, YouTube, etc.\",\"PeriodicalId\":405272,\"journal\":{\"name\":\"2023 International Conference on Advancement in Computation & Computer Technologies (InCACCT)\",\"volume\":\"125 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Advancement in Computation & Computer Technologies (InCACCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/InCACCT57535.2023.10141803\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Advancement in Computation & Computer Technologies (InCACCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/InCACCT57535.2023.10141803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从文本中自动提取积极或消极的态度表达,即情感分析,在过去10年里引起了学术界的极大兴趣。他们对不同的个人、群体、地点、场合和概念持有赞成和不赞成的意见。由于自然语言处理和机器学习提供的工具,再加上处理大量文本的其他方法,现在从社交媒体中提取情感是可行的。在这项工作中,我们研究了情感提取中的一些困难,一些用于克服这些困难的方法,以及我们的方法。在这项研究中,我们探索了变形变压器双向编码器表示(BERT)模型的使用,用于对Twitter、YouTube等社交媒体平台上生成的数据进行情感分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sentiment Analysis Dashboard for Socia Media comments using BERT
The automatic extraction of positive or negative attitude expressions from text, known as sentiment analysis, has drawn a lot of interest from academics in the last 10 years. They hold both favorable and unfavorable opinions on various individuals, groups, locations, occasions, and concepts. It is now feasible to start extracting feelings from social media, thanks to the tools given by NLP and machine learning, coupled with othermethods to work with massive quantities of text. In this work, we examine some of the difficulties in sentiment extraction, some of the methods used to overcome these difficulties, and our method. In this study, we explore the usage of Bidirectional Encoder Representations from Transformers (BERT) models for sentiment analysis on data generated on social media platforms like Twitter, YouTube, etc.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信