Stein的方法在两个极限定理中涉及到广义逆高斯分布

E. Konzou, E. Koudou, K. Gneyou
{"title":"Stein的方法在两个极限定理中涉及到广义逆高斯分布","authors":"E. Konzou, E. Koudou, K. Gneyou","doi":"10.16929/as/2021.2561.174","DOIUrl":null,"url":null,"abstract":"The generalized hyperbolic (GH) distribution converges in law to the generalized inverse Gaussian (GIG) distribution under certain conditions on the parameters. When the edges of an infinite rooted tree are equipped with independent resistances that are inverse Gaussian or reciprocal inverse Gaussian distributions, the total resistance converges almost surely to some random variable which follows the reciprocal inverse Gaussian (RIG) distribution. In this paper we provide explicit upper bounds for the distributional distance between GH (resp. infinite tree) distribution and their limiting GIG (resp. RIG) distribution applying Stein's method.","PeriodicalId":430341,"journal":{"name":"Afrika Statistika","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stein's method in two limit theorems involving the generalized inverse Gaussian distribution\",\"authors\":\"E. Konzou, E. Koudou, K. Gneyou\",\"doi\":\"10.16929/as/2021.2561.174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The generalized hyperbolic (GH) distribution converges in law to the generalized inverse Gaussian (GIG) distribution under certain conditions on the parameters. When the edges of an infinite rooted tree are equipped with independent resistances that are inverse Gaussian or reciprocal inverse Gaussian distributions, the total resistance converges almost surely to some random variable which follows the reciprocal inverse Gaussian (RIG) distribution. In this paper we provide explicit upper bounds for the distributional distance between GH (resp. infinite tree) distribution and their limiting GIG (resp. RIG) distribution applying Stein's method.\",\"PeriodicalId\":430341,\"journal\":{\"name\":\"Afrika Statistika\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Afrika Statistika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.16929/as/2021.2561.174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Statistika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.16929/as/2021.2561.174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在一定的参数条件下,广义双曲分布规律收敛于广义逆高斯分布。当无限根树的边缘具有独立的反高斯或倒高斯分布的阻力时,总阻力几乎必然收敛到一个服从倒高斯分布的随机变量。在本文中,我们给出了GH (r)的分布距离的显式上界。无限树)分布及其极限GIG(参见。RIG)分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stein's method in two limit theorems involving the generalized inverse Gaussian distribution
The generalized hyperbolic (GH) distribution converges in law to the generalized inverse Gaussian (GIG) distribution under certain conditions on the parameters. When the edges of an infinite rooted tree are equipped with independent resistances that are inverse Gaussian or reciprocal inverse Gaussian distributions, the total resistance converges almost surely to some random variable which follows the reciprocal inverse Gaussian (RIG) distribution. In this paper we provide explicit upper bounds for the distributional distance between GH (resp. infinite tree) distribution and their limiting GIG (resp. RIG) distribution applying Stein's method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信