{"title":"Stein的方法在两个极限定理中涉及到广义逆高斯分布","authors":"E. Konzou, E. Koudou, K. Gneyou","doi":"10.16929/as/2021.2561.174","DOIUrl":null,"url":null,"abstract":"The generalized hyperbolic (GH) distribution converges in law to the generalized inverse Gaussian (GIG) distribution under certain conditions on the parameters. When the edges of an infinite rooted tree are equipped with independent resistances that are inverse Gaussian or reciprocal inverse Gaussian distributions, the total resistance converges almost surely to some random variable which follows the reciprocal inverse Gaussian (RIG) distribution. In this paper we provide explicit upper bounds for the distributional distance between GH (resp. infinite tree) distribution and their limiting GIG (resp. RIG) distribution applying Stein's method.","PeriodicalId":430341,"journal":{"name":"Afrika Statistika","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stein's method in two limit theorems involving the generalized inverse Gaussian distribution\",\"authors\":\"E. Konzou, E. Koudou, K. Gneyou\",\"doi\":\"10.16929/as/2021.2561.174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The generalized hyperbolic (GH) distribution converges in law to the generalized inverse Gaussian (GIG) distribution under certain conditions on the parameters. When the edges of an infinite rooted tree are equipped with independent resistances that are inverse Gaussian or reciprocal inverse Gaussian distributions, the total resistance converges almost surely to some random variable which follows the reciprocal inverse Gaussian (RIG) distribution. In this paper we provide explicit upper bounds for the distributional distance between GH (resp. infinite tree) distribution and their limiting GIG (resp. RIG) distribution applying Stein's method.\",\"PeriodicalId\":430341,\"journal\":{\"name\":\"Afrika Statistika\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Afrika Statistika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.16929/as/2021.2561.174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Statistika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.16929/as/2021.2561.174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stein's method in two limit theorems involving the generalized inverse Gaussian distribution
The generalized hyperbolic (GH) distribution converges in law to the generalized inverse Gaussian (GIG) distribution under certain conditions on the parameters. When the edges of an infinite rooted tree are equipped with independent resistances that are inverse Gaussian or reciprocal inverse Gaussian distributions, the total resistance converges almost surely to some random variable which follows the reciprocal inverse Gaussian (RIG) distribution. In this paper we provide explicit upper bounds for the distributional distance between GH (resp. infinite tree) distribution and their limiting GIG (resp. RIG) distribution applying Stein's method.