一种结合FP-growth和LDA的关键词提取新方法

Hao Sun, Bing Li, Bo Han
{"title":"一种结合FP-growth和LDA的关键词提取新方法","authors":"Hao Sun, Bing Li, Bo Han","doi":"10.1109/FSKD.2017.8393033","DOIUrl":null,"url":null,"abstract":"Fast-growing technologies like cloud-computing, big data, mobile Internet, artificial intelligence, etc. have driven the emergences of a lot of new phrases. In this paper, we propose a novel keyphrases extraction method with two steps by combining FP-growth algorithm and Latent Dirichlet Allocation (LDA) topic modeling. In the first step, we apply FP-growth algorithm to obtain frequent neighborhood words co-occurring frequently as candidate phrases. In the second step, we extract significant keyphrases by LDA models. Our experiments on two datasets CVE-2015 and 20-newsgroups have shown that the proposed approach can extract significant keyphrases and these phrases can help improve the text classification accuracy.","PeriodicalId":236093,"journal":{"name":"2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel keyphrase extraction method by combining FP-growth and LDA\",\"authors\":\"Hao Sun, Bing Li, Bo Han\",\"doi\":\"10.1109/FSKD.2017.8393033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fast-growing technologies like cloud-computing, big data, mobile Internet, artificial intelligence, etc. have driven the emergences of a lot of new phrases. In this paper, we propose a novel keyphrases extraction method with two steps by combining FP-growth algorithm and Latent Dirichlet Allocation (LDA) topic modeling. In the first step, we apply FP-growth algorithm to obtain frequent neighborhood words co-occurring frequently as candidate phrases. In the second step, we extract significant keyphrases by LDA models. Our experiments on two datasets CVE-2015 and 20-newsgroups have shown that the proposed approach can extract significant keyphrases and these phrases can help improve the text classification accuracy.\",\"PeriodicalId\":236093,\"journal\":{\"name\":\"2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)\",\"volume\":\"125 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FSKD.2017.8393033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSKD.2017.8393033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

云计算、大数据、移动互联网、人工智能等快速发展的技术带动了许多新短语的出现。本文将FP-growth算法与Latent Dirichlet Allocation (LDA)主题建模相结合,提出了一种新的两步关键短语提取方法。在第一步中,我们使用FP-growth算法获得频繁共存的邻域词作为候选短语。第二步,利用LDA模型提取重要关键短语。我们在CVE-2015和20-newsgroups两个数据集上的实验表明,该方法可以提取出重要的关键短语,这些关键短语有助于提高文本分类的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel keyphrase extraction method by combining FP-growth and LDA
Fast-growing technologies like cloud-computing, big data, mobile Internet, artificial intelligence, etc. have driven the emergences of a lot of new phrases. In this paper, we propose a novel keyphrases extraction method with two steps by combining FP-growth algorithm and Latent Dirichlet Allocation (LDA) topic modeling. In the first step, we apply FP-growth algorithm to obtain frequent neighborhood words co-occurring frequently as candidate phrases. In the second step, we extract significant keyphrases by LDA models. Our experiments on two datasets CVE-2015 and 20-newsgroups have shown that the proposed approach can extract significant keyphrases and these phrases can help improve the text classification accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信