一种新的支持sdn的IoT视频分析边缘计算负载均衡方案

Pouria Pourrashidi Shahrbabaki, Rodolfo W. L. Coutinho, Y. Shayan
{"title":"一种新的支持sdn的IoT视频分析边缘计算负载均衡方案","authors":"Pouria Pourrashidi Shahrbabaki, Rodolfo W. L. Coutinho, Y. Shayan","doi":"10.1109/GLOBECOM48099.2022.10000605","DOIUrl":null,"url":null,"abstract":"Edge computing has been designed to deploy resources in the proximity of IoT devices, which reduces latency and network overhead. Nevertheless, resources on edge servers are limited and must efficiently be managed. In this paper, we propose a novel software-defined networking (SDN)-based scheme to balance the computation resource requests among a network of edge servers aimed at supporting IoT video analytics streaming applications. In the proposed solution, programmable switches periodically report the IoT video streaming workload forwarded to each edge server. This information is then used at the SDN controller to estimate the incoming and outgoing traffic load at edge servers and balance IoT video streaming among them, by updating routing tables at the programmable switches. The performance of the proposed solution is evaluated and compared to related schemes through extensive simulations using the Mininet emulator. Obtained results show that the proposed solution can reduce up to 21 % of average latency with 20 % load saving in each edge server, compared to deterministic and random-based related solutions.","PeriodicalId":313199,"journal":{"name":"GLOBECOM 2022 - 2022 IEEE Global Communications Conference","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Novel SDN-enabled Edge Computing Load Balancing Scheme for IoT Video Analytics\",\"authors\":\"Pouria Pourrashidi Shahrbabaki, Rodolfo W. L. Coutinho, Y. Shayan\",\"doi\":\"10.1109/GLOBECOM48099.2022.10000605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Edge computing has been designed to deploy resources in the proximity of IoT devices, which reduces latency and network overhead. Nevertheless, resources on edge servers are limited and must efficiently be managed. In this paper, we propose a novel software-defined networking (SDN)-based scheme to balance the computation resource requests among a network of edge servers aimed at supporting IoT video analytics streaming applications. In the proposed solution, programmable switches periodically report the IoT video streaming workload forwarded to each edge server. This information is then used at the SDN controller to estimate the incoming and outgoing traffic load at edge servers and balance IoT video streaming among them, by updating routing tables at the programmable switches. The performance of the proposed solution is evaluated and compared to related schemes through extensive simulations using the Mininet emulator. Obtained results show that the proposed solution can reduce up to 21 % of average latency with 20 % load saving in each edge server, compared to deterministic and random-based related solutions.\",\"PeriodicalId\":313199,\"journal\":{\"name\":\"GLOBECOM 2022 - 2022 IEEE Global Communications Conference\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GLOBECOM 2022 - 2022 IEEE Global Communications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOBECOM48099.2022.10000605\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GLOBECOM 2022 - 2022 IEEE Global Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM48099.2022.10000605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

边缘计算旨在将资源部署在物联网设备附近,从而减少延迟和网络开销。然而,边缘服务器上的资源是有限的,必须有效地管理。在本文中,我们提出了一种新的基于软件定义网络(SDN)的方案来平衡边缘服务器网络之间的计算资源请求,旨在支持物联网视频分析流应用。在提出的解决方案中,可编程交换机定期报告转发到每个边缘服务器的物联网视频流工作负载。然后在SDN控制器上使用此信息来估计边缘服务器上的传入和传出流量负载,并通过更新可编程交换机上的路由表来平衡它们之间的物联网视频流。通过使用Mininet仿真器进行大量仿真,对所提出的解决方案的性能进行了评估并与相关方案进行了比较。得到的结果表明,与确定性和基于随机的相关解决方案相比,所提出的解决方案可以在每个边缘服务器上减少高达21%的平均延迟和20%的负载节省。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel SDN-enabled Edge Computing Load Balancing Scheme for IoT Video Analytics
Edge computing has been designed to deploy resources in the proximity of IoT devices, which reduces latency and network overhead. Nevertheless, resources on edge servers are limited and must efficiently be managed. In this paper, we propose a novel software-defined networking (SDN)-based scheme to balance the computation resource requests among a network of edge servers aimed at supporting IoT video analytics streaming applications. In the proposed solution, programmable switches periodically report the IoT video streaming workload forwarded to each edge server. This information is then used at the SDN controller to estimate the incoming and outgoing traffic load at edge servers and balance IoT video streaming among them, by updating routing tables at the programmable switches. The performance of the proposed solution is evaluated and compared to related schemes through extensive simulations using the Mininet emulator. Obtained results show that the proposed solution can reduce up to 21 % of average latency with 20 % load saving in each edge server, compared to deterministic and random-based related solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信