求解四阶Sturm-Liouville问题特征值的Chebyshev搭配法

R. Darzi, B. Agheli
{"title":"求解四阶Sturm-Liouville问题特征值的Chebyshev搭配法","authors":"R. Darzi, B. Agheli","doi":"10.18052/WWW.SCIPRESS.COM/BMSA.15.62","DOIUrl":null,"url":null,"abstract":"In this work, we have suggested that the Chebyshev collocation method can be employed for detecting the eigenvalues of fourth-order Sturm-Liouville problems. Two examples are presented subsequently. Numerical eventuates indicate that the present method is accurate. Introduction The boundary value problems for ordinary differential equations have a notable role theoretically. Also, they have diverse applications. A great number of physical, biological and chemical phenomena, can be explained through using boundary value problems. In this paper, Chebyshev collocationmethod is used to acquire the solutions for the subsequent fourth order nonsingular Sturm-Liouville problems (q0(x)y ′′(x))′′ + (q1(x)y ′(x))′ + (μv(x)− q2(x))y(x) = 0, a < x < b, (1) or y = F (y(x), y′(x), y′′(x), y′′′(x), μ) (2) or y + p3(x)y ′′′(x) + p2(x)y ′′(x) + p1(x)y ′(x) + (μw(x)− r(x))y(x) = 0 (3) with the four linearly independent homogeneous boundary conditions","PeriodicalId":252632,"journal":{"name":"Bulletin of Mathematical Sciences and Applications","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Chebyshev Collocation Method for Finding the Eigenvalues of Fourth-Order Sturm-Liouville Problems\",\"authors\":\"R. Darzi, B. Agheli\",\"doi\":\"10.18052/WWW.SCIPRESS.COM/BMSA.15.62\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we have suggested that the Chebyshev collocation method can be employed for detecting the eigenvalues of fourth-order Sturm-Liouville problems. Two examples are presented subsequently. Numerical eventuates indicate that the present method is accurate. Introduction The boundary value problems for ordinary differential equations have a notable role theoretically. Also, they have diverse applications. A great number of physical, biological and chemical phenomena, can be explained through using boundary value problems. In this paper, Chebyshev collocationmethod is used to acquire the solutions for the subsequent fourth order nonsingular Sturm-Liouville problems (q0(x)y ′′(x))′′ + (q1(x)y ′(x))′ + (μv(x)− q2(x))y(x) = 0, a < x < b, (1) or y = F (y(x), y′(x), y′′(x), y′′′(x), μ) (2) or y + p3(x)y ′′′(x) + p2(x)y ′′(x) + p1(x)y ′(x) + (μw(x)− r(x))y(x) = 0 (3) with the four linearly independent homogeneous boundary conditions\",\"PeriodicalId\":252632,\"journal\":{\"name\":\"Bulletin of Mathematical Sciences and Applications\",\"volume\":\"128 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Mathematical Sciences and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18052/WWW.SCIPRESS.COM/BMSA.15.62\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Sciences and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18052/WWW.SCIPRESS.COM/BMSA.15.62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们提出了Chebyshev配置法可以用于检测四阶Sturm-Liouville问题的特征值。随后给出了两个例子。数值结果表明,该方法是准确的。常微分方程边值问题具有重要的理论意义。此外,它们有各种各样的应用。许多物理、生物和化学现象都可以用边值问题来解释。本文利用Chebyshev配位法,得到了具有四个线性无关齐次边界条件的后续四阶非奇异Sturm-Liouville问题(q0(x)y ' ' (x)) + (q1(x)y ' (x)) + (μv(x) - q2(x))y(x) = 0, a < x < b,(1)或y = F (y(x), y ' (x), y ' (x), y ' (x), y ' (x), μ)(2)或y + p3(x)y ' ' (x) + p2(x)y ' (x) + p1(x)y ' (x) + (μw(x) - r(x))y(x) = 0(3)的解
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Chebyshev Collocation Method for Finding the Eigenvalues of Fourth-Order Sturm-Liouville Problems
In this work, we have suggested that the Chebyshev collocation method can be employed for detecting the eigenvalues of fourth-order Sturm-Liouville problems. Two examples are presented subsequently. Numerical eventuates indicate that the present method is accurate. Introduction The boundary value problems for ordinary differential equations have a notable role theoretically. Also, they have diverse applications. A great number of physical, biological and chemical phenomena, can be explained through using boundary value problems. In this paper, Chebyshev collocationmethod is used to acquire the solutions for the subsequent fourth order nonsingular Sturm-Liouville problems (q0(x)y ′′(x))′′ + (q1(x)y ′(x))′ + (μv(x)− q2(x))y(x) = 0, a < x < b, (1) or y = F (y(x), y′(x), y′′(x), y′′′(x), μ) (2) or y + p3(x)y ′′′(x) + p2(x)y ′′(x) + p1(x)y ′(x) + (μw(x)− r(x))y(x) = 0 (3) with the four linearly independent homogeneous boundary conditions
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信