用尺度共轭梯度算法对沉香油参数中不同品质的化合物进行模式分类

N. Zubir, M. A. Abas, N. Ismail, N. A. Ali, M. Rahiman, N. K. Mun, M. Taib, N. Saiful
{"title":"用尺度共轭梯度算法对沉香油参数中不同品质的化合物进行模式分类","authors":"N. Zubir, M. A. Abas, N. Ismail, N. A. Ali, M. Rahiman, N. K. Mun, M. Taib, N. Saiful","doi":"10.1109/CSPA.2017.8064917","DOIUrl":null,"url":null,"abstract":"This paper presents the modelling of agarwood oil (AO) significant compounds by different qualities using Scaled Conjugate Gradient (SCG) algorithm. This technique involved of data collection from Gas Chromatography-Mass Spectrometry (GC-MS) for compound extraction. The development of Multilayer perceptron (MLP) is used to discriminate the qualities of AO chemical compounds to the high and low quality. The input and output data was transferred to the MATLAB version R2013a for extended analysis. The input is the abundances of significant compounds (%) and the output is the oil quality either high or low. This involved of identification, selection and optimization of a MLP as classifiers to identify and classify the agarwood oil quality. The result showed that MLP as pattern classifier is successful classify agarwood oil quality using SCG algorithm with 100% accuracy. This finding is important in agarwood oil area especially in grading system.","PeriodicalId":445522,"journal":{"name":"2017 IEEE 13th International Colloquium on Signal Processing & its Applications (CSPA)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Pattern classifier of chemical compounds in different qualities of agarwood oil parameter using scale conjugate gradient algorithm in MLP\",\"authors\":\"N. Zubir, M. A. Abas, N. Ismail, N. A. Ali, M. Rahiman, N. K. Mun, M. Taib, N. Saiful\",\"doi\":\"10.1109/CSPA.2017.8064917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the modelling of agarwood oil (AO) significant compounds by different qualities using Scaled Conjugate Gradient (SCG) algorithm. This technique involved of data collection from Gas Chromatography-Mass Spectrometry (GC-MS) for compound extraction. The development of Multilayer perceptron (MLP) is used to discriminate the qualities of AO chemical compounds to the high and low quality. The input and output data was transferred to the MATLAB version R2013a for extended analysis. The input is the abundances of significant compounds (%) and the output is the oil quality either high or low. This involved of identification, selection and optimization of a MLP as classifiers to identify and classify the agarwood oil quality. The result showed that MLP as pattern classifier is successful classify agarwood oil quality using SCG algorithm with 100% accuracy. This finding is important in agarwood oil area especially in grading system.\",\"PeriodicalId\":445522,\"journal\":{\"name\":\"2017 IEEE 13th International Colloquium on Signal Processing & its Applications (CSPA)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 13th International Colloquium on Signal Processing & its Applications (CSPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSPA.2017.8064917\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 13th International Colloquium on Signal Processing & its Applications (CSPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSPA.2017.8064917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文采用缩放共轭梯度(SCG)算法对沉香油(AO)中不同质量的重要化合物进行建模。该技术涉及气相色谱-质谱(GC-MS)提取化合物的数据收集。利用多层感知器(MLP)的发展,将AO化合物的质量区分为高质量和低质量。将输入输出数据传输到MATLAB版本R2013a进行扩展分析。输入是重要化合物的丰度(%),输出是高或低的油质量。这涉及到一个MLP的识别、选择和优化作为分类器来识别和分类沉香油的质量。结果表明,MLP作为模式分类器,利用SCG算法对沉香油质量进行分类,准确率达到100%。这一发现在沉香油区特别是分级体系中具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pattern classifier of chemical compounds in different qualities of agarwood oil parameter using scale conjugate gradient algorithm in MLP
This paper presents the modelling of agarwood oil (AO) significant compounds by different qualities using Scaled Conjugate Gradient (SCG) algorithm. This technique involved of data collection from Gas Chromatography-Mass Spectrometry (GC-MS) for compound extraction. The development of Multilayer perceptron (MLP) is used to discriminate the qualities of AO chemical compounds to the high and low quality. The input and output data was transferred to the MATLAB version R2013a for extended analysis. The input is the abundances of significant compounds (%) and the output is the oil quality either high or low. This involved of identification, selection and optimization of a MLP as classifiers to identify and classify the agarwood oil quality. The result showed that MLP as pattern classifier is successful classify agarwood oil quality using SCG algorithm with 100% accuracy. This finding is important in agarwood oil area especially in grading system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信