基于贝叶斯估计的语义人体传感器模型的结构化合成与压缩

Nicholas Sweet, N. Ahmed
{"title":"基于贝叶斯估计的语义人体传感器模型的结构化合成与压缩","authors":"Nicholas Sweet, N. Ahmed","doi":"10.1109/ACC.2016.7526529","DOIUrl":null,"url":null,"abstract":"We consider the problem of fusing human-generated semantic `soft sensor' data with conventional `hard sensor' data to augment Bayesian state estimators. This requires modeling semantic soft data via generalized continuous-to-discrete softmax likelihood functions, which can theoretically model semantic descriptions of any dynamic state space. This paper addresses two important related issues for deploying these models in practical applications. First, a general solution to the data-free likelihood synthesis problem is provided. This allows for easy embedding of contextual constraints and other relevant a priori information within generalized softmax models, without resorting to expensive non-convex optimization procedures for parameter estimation with sparse data. This result is then used to derive strategies for combining multiple semantic human observation models into `compressed' likelihood functions for fast batch data fusion. The proposed methods are demonstrated on a human-robot target search application.","PeriodicalId":137983,"journal":{"name":"2016 American Control Conference (ACC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Structured synthesis and compression of semantic human sensor models for Bayesian estimation\",\"authors\":\"Nicholas Sweet, N. Ahmed\",\"doi\":\"10.1109/ACC.2016.7526529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of fusing human-generated semantic `soft sensor' data with conventional `hard sensor' data to augment Bayesian state estimators. This requires modeling semantic soft data via generalized continuous-to-discrete softmax likelihood functions, which can theoretically model semantic descriptions of any dynamic state space. This paper addresses two important related issues for deploying these models in practical applications. First, a general solution to the data-free likelihood synthesis problem is provided. This allows for easy embedding of contextual constraints and other relevant a priori information within generalized softmax models, without resorting to expensive non-convex optimization procedures for parameter estimation with sparse data. This result is then used to derive strategies for combining multiple semantic human observation models into `compressed' likelihood functions for fast batch data fusion. The proposed methods are demonstrated on a human-robot target search application.\",\"PeriodicalId\":137983,\"journal\":{\"name\":\"2016 American Control Conference (ACC)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2016.7526529\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2016.7526529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

我们考虑将人工生成的语义“软传感器”数据与传统的“硬传感器”数据融合以增强贝叶斯状态估计器的问题。这需要通过广义的连续到离散的softmax似然函数来建模语义软数据,理论上可以建模任何动态状态空间的语义描述。本文讨论了在实际应用中部署这些模型的两个重要相关问题。首先,给出了无数据似然综合问题的一般解法。这允许在广义softmax模型中轻松嵌入上下文约束和其他相关的先验信息,而无需借助于昂贵的非凸优化过程来对稀疏数据进行参数估计。然后,该结果用于导出将多个语义人类观察模型组合为“压缩”似然函数的策略,以实现快速批量数据融合。并在一个人机目标搜索应用中进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structured synthesis and compression of semantic human sensor models for Bayesian estimation
We consider the problem of fusing human-generated semantic `soft sensor' data with conventional `hard sensor' data to augment Bayesian state estimators. This requires modeling semantic soft data via generalized continuous-to-discrete softmax likelihood functions, which can theoretically model semantic descriptions of any dynamic state space. This paper addresses two important related issues for deploying these models in practical applications. First, a general solution to the data-free likelihood synthesis problem is provided. This allows for easy embedding of contextual constraints and other relevant a priori information within generalized softmax models, without resorting to expensive non-convex optimization procedures for parameter estimation with sparse data. This result is then used to derive strategies for combining multiple semantic human observation models into `compressed' likelihood functions for fast batch data fusion. The proposed methods are demonstrated on a human-robot target search application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信