保留物理特征的大型MD数据的特定应用程序压缩

P. Gralka, Sebastian Grottel, G. Reina, T. Ertl
{"title":"保留物理特征的大型MD数据的特定应用程序压缩","authors":"P. Gralka, Sebastian Grottel, G. Reina, T. Ertl","doi":"10.1109/LDAV.2013.6675162","DOIUrl":null,"url":null,"abstract":"Application areas like physics or thermodynamics often require simulations of very large data sets, up to the order of 1012 particles or even larger, to obtain results relevant for realistic industrial processes. Persisting such data is too costly, prohibiting interactive visual analysis in a classical post-processing fashion. Thus, analysis is restricted to statistical aggregation or visual in-situ exploration, both requiring an inkling of the results beforehand. We alleviate this issue by applying an application-optimized lossy compression. Reducing the size while at the same time preserving relevant physical characteristics of the data allows for accessibility on workstations and practical long-term storage. The compression is achieved by generating a density volume that is processed using wavelet decomposition, quantization and run-length encoding. Our reconstruction of particle data ensures the restoration of physically relevant properties. It employs a model based on stochastic distributions complemented by further adjustments. We evaluate the precision of the reconstruction for several data sets and a wide range of compression variants to show the effectiveness and user-adjustable trade-offs of the presented method.","PeriodicalId":266607,"journal":{"name":"2013 IEEE Symposium on Large-Scale Data Analysis and Visualization (LDAV)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Application-specific compression of large MD data preserving physical characteristics\",\"authors\":\"P. Gralka, Sebastian Grottel, G. Reina, T. Ertl\",\"doi\":\"10.1109/LDAV.2013.6675162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Application areas like physics or thermodynamics often require simulations of very large data sets, up to the order of 1012 particles or even larger, to obtain results relevant for realistic industrial processes. Persisting such data is too costly, prohibiting interactive visual analysis in a classical post-processing fashion. Thus, analysis is restricted to statistical aggregation or visual in-situ exploration, both requiring an inkling of the results beforehand. We alleviate this issue by applying an application-optimized lossy compression. Reducing the size while at the same time preserving relevant physical characteristics of the data allows for accessibility on workstations and practical long-term storage. The compression is achieved by generating a density volume that is processed using wavelet decomposition, quantization and run-length encoding. Our reconstruction of particle data ensures the restoration of physically relevant properties. It employs a model based on stochastic distributions complemented by further adjustments. We evaluate the precision of the reconstruction for several data sets and a wide range of compression variants to show the effectiveness and user-adjustable trade-offs of the presented method.\",\"PeriodicalId\":266607,\"journal\":{\"name\":\"2013 IEEE Symposium on Large-Scale Data Analysis and Visualization (LDAV)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Symposium on Large-Scale Data Analysis and Visualization (LDAV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LDAV.2013.6675162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Symposium on Large-Scale Data Analysis and Visualization (LDAV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LDAV.2013.6675162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

物理或热力学等应用领域通常需要模拟非常大的数据集,高达1012个粒子或更大的数量级,以获得与现实工业过程相关的结果。持久化这类数据的成本太高,妨碍了传统后处理方式的交互式可视化分析。因此,分析仅限于统计汇总或可视化现场勘探,两者都需要事先了解结果。我们通过应用应用程序优化的有损压缩来缓解这个问题。减小了数据的大小,同时保留了数据的相关物理特性,从而可以在工作站上访问和实际的长期存储。压缩是通过生成密度体积来实现的,密度体积是用小波分解、量化和运行长度编码来处理的。我们对粒子数据的重建确保了物理相关属性的恢复。它采用了一个基于随机分布的模型,并辅以进一步的调整。我们对几个数据集和广泛的压缩变量的重建精度进行了评估,以显示所提出方法的有效性和用户可调整的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application-specific compression of large MD data preserving physical characteristics
Application areas like physics or thermodynamics often require simulations of very large data sets, up to the order of 1012 particles or even larger, to obtain results relevant for realistic industrial processes. Persisting such data is too costly, prohibiting interactive visual analysis in a classical post-processing fashion. Thus, analysis is restricted to statistical aggregation or visual in-situ exploration, both requiring an inkling of the results beforehand. We alleviate this issue by applying an application-optimized lossy compression. Reducing the size while at the same time preserving relevant physical characteristics of the data allows for accessibility on workstations and practical long-term storage. The compression is achieved by generating a density volume that is processed using wavelet decomposition, quantization and run-length encoding. Our reconstruction of particle data ensures the restoration of physically relevant properties. It employs a model based on stochastic distributions complemented by further adjustments. We evaluate the precision of the reconstruction for several data sets and a wide range of compression variants to show the effectiveness and user-adjustable trade-offs of the presented method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信